

International Partnership for Hydrogen and Fuel Cells in the Economy

U.S. Country Update IPHE Steering Committee Meeting

Dr. Sunita Satyapal
Director
Hydrogen and Fuel Cells Program
U.S. Department of Energy

November 20th, 2013 Fukuoka, Japan

U.S. Dept. of Energy Organization

the WHITE HOUSE PRESIDENT OBAMA IS CALLING ON CONGRESS TO ESTABLISH AN ENERGY SECURITY TRUST HERE'S HOW IT WORKS **FUNDED WITH** REVENUE FROM PROFITABLE OIL AND GAS COMPANIES Fully paid for within Supports research by the President's budget. American scientists on No extra costs. long-term projects. **CUTTING-EDGE DISCOVERIES** IN TECHNOLOGIES THAT WILL SHIFT OUR VEHICLES OFF OIL FOR GOOD Natural gas fuel tanks that are Advanced Cleaner cheaper, lighter electric vehicles technologies and stronger American Energy Sources Pollution Jobs **Energy Costs** Technology The Energy Security Trust is just one piece of President Obama's All of the Above approach to create a secure energy future. The President's plan will cut our reliance on foreign oil, create jobs and help lower energy cost for middle class families. SHARE THIS IF YOU THINK IT'S A GOOD IDEA 3/15/2013 WH.GOV/ENERGY

The President's proposal will support research into a range of cost-effective technologies – like advanced vehicles that run on electricity, homegrown biofuels, fuel cells, and domestically produced natural gas.

Overview

Mission: Enable widespread commercialization of a portfolio of hydrogen and fuel cell technologies through applied research, technology development and demonstration, and diverse efforts to overcome institutional and market challenges.

4

Projected highvolume cost of fuel cells has been reduced to \$55/kW (2013)*

- More than 30% reduction since 2008
- More than 50% reduction since 2006

*Based on projection to high-volume manufacturing (500,000 units/year). The projected cost status is based on an analysis of state-of-the-art components that have been developed and demonstrated through the DOE Program at the laboratory scale. Additional efforts would be needed for integration of components into a complete automotive system that meets durability requirements in real-world conditions.

5

Hydrogen Production Strategies

Goal: Develop technologies to produce hydrogen from clean, domestic resources at a delivered and dispensed cost of \$2-\$4/gge H₂

- Cost ranges are shown in 2007 dollars, based on projections from H2A analyses, and reflect variability in major feedstock pricing and a bounded range for capital cost estimates.
- Projections of costs assume Nth-plant construction, distributed station capacities of 1,500 kg/day, and centralized station capacities of ≥50,000 kg/day.

-6

Infrastructure: Current Barriers

Despite progress in infrastructure development, more work is needed to address permitting times, contract issues, and equipment reliability.

7%

Source: NREL http://www.nrel.gov/hydrogen/cfm/images/cdp_mhe_51_infhydrogenleaksbyequipmenttype.jpg

Hydrogen Safety, Codes & Standards

Safety Information helps guide R&D.

It is critical to collect and disseminate

relevant information.

Database web address – www.h2incidents.org

Examples:

Piping (36)

Valve (36)

Flexible Tubing (8)

Gasket (6)

Bolts (6)

Laboratory Equipment

Two Looks at H2Incidents.org

210 Lessons Learned Events

 Trained > 26,000 firstresponders and code officials on hydrogen safety and permitting through on-line and inclassroom courses

Announced by the U.S. Department of Energy September 2013

Vehicles &

Fueling Systems

Systems

Resource Requirements Analysis

Hydrogen demand from future market success with FCEVs would not place excessive strain on resources or production capacity for natural gas or coal, would comprise a significant portion of total demand for nuclear and biomass, and would significantly exceed expected demand for wind and solar.

Current and projected scenarios for energy consumption by resource type, with requirements for 50 million FCEVs

NREL report to be published (Q1 FY2014)

Report identifies percent increase in resources required for 20-50M FCEVs.

9

Funding (\$ in thousands)					
Key Activity	FY 2012 Approp.	FY 2013 Enacted (C.R.)	FY 2014 Request		
Fuel Cell R&D	43,634	41,266	37,500		
Hydrogen Fuel R&D ¹	33,824	31,682	38,500		
Manufacturing R&D	1,944	1,899	4,000		
Systems Analysis	3,000	2,838	3,000		
Technology Validation	8,986	8,514	6,000		
Safety, Codes and Standards	6,938	6,808	7,000		
Market Transformation	3,000	2,838	3,000		
NREL Site-Wide Facilities Support	0	0	1,000		
SBIR/STTR	2,298	2,139	TBD		
Total	\$103,624	\$97,984	\$100,000		

Funding Opportunity
Announcements (FOAs)
planned

Production & Delivery (FY14)

Hydrogen Storage (FY14)

Technology Validation and Market Transformation (FY13 & FY14)

Manufacturing R&D (FY14)

Funding (\$ in thousands)				
FY 2012 FY 2013				
Key Activity	Approp.	Enacted (C.R.)		
Science (Basic Energy Science)	27,466	25,769		
Fossil Energy (SECA)	25,000	~23,750		
ARPA-E (FC related)	0	2,114		
Total	\$52,466	\$51,633		

¹Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D

Note: The FY 2012 and FY 2013 numbers shown on page 384 of the White House's FY 2014 Budget Request (www.whitehouse.gov/sites/default/files/omb/budget/fy2014/assets/doe.pdf) reflect \$9.7 million that was carried over from FY 2012 to FY 2013 for obligation in FY 2013.

H₂USA

Mission: To promote the commercial introduction and widespread adoption of FCEVs across America through creation of a public-private partnership to overcome the hurdle of establishing hydrogen infrastructure.

Current partners include (additional in process):

The Power of Dreams

DAIMLER

Advanced Hydrogen Solutions

American Gas Association

H₂USA Organization Chart

12

H-Prize: Hydrogen Refueler (Draft)

- The Hydrogen Refueler H-Prize will work to incentivize the development of small-scale systems for non-commercial fueling to supplement the larger infrastructure development
- **Previous H-Prize RFIs and discussions at HTAC meetings**

May 2012: H-Prize topic RFI (issued March, deadline extended through May)

August-September 2012: Meter topic RFI

September 2012: Briefing and consultation on the Meters topic

November 2012: Update on meter prize (put on hold)

February 2013: Update on reasons for dropping the meter topic

and ideas about the home refueler topic

April 2013: Update on newly released RFI on the Home

Refueler topic

- Refueler entries would:
 - produce hydrogen from resources
 available to most residential locations electricity or natural gas
 - dispense at least 1 kg during a fueling period, roughly the amount needed for an average day's drive
 - be designed for non-commercial use in either homes (1-5 kg/day) or community centers/retail fleets (5-50 kg/day)
- Guidelines will be posted for open public comment before the competition begins;
 competition is expected to last 2 years after the official launch
- Approximately 18 months into the competition teams will submit data to show the entry
 meets the minimum criteria; the top 5 entries will proceed to the testing phase, where tested
 criteria will be scored to determine the team rankings

Hydrogen and Fuel Cell Initiatives at the State Level

Several states—including California, Connecticut, Hawaii, Ohio, New York, and South Carolina—have major hydrogen and fuel cell programs underway.

8 states sign MoU to put 3.3M zeroemission vehicles on roads by 2025

States include California, Connecticut, Massachusetts, Maryland, New York, Oregon, Rhode Island, & Vermont

• Represents a new vehicle market penetration of ~15%

California

FCEVs and Fuel Cell Buses

- > **560 vehicles** in operation since 1999 ~230 currently operating
- > 6 million miles driven
- > 1 million passengers on fuel cell buses

H₂ Station Investment

- ~\$34M invested (CARB and CEC)
- \$5.5M invested by SCAQMD
- ~\$29.9M available (CEC solicitation coming)
- \$20M for 2014/15 (CEC)
- **\$20M annually** thru 2023 for at least 100 stations (AB8)

Northeast (e.g. MA, NY, CT)

Preliminary: 3
phase plan for the
development of
hydrogen
infrastructure and
deployment of fuel
cell electric
vehicles (FCEVs) in
the north eastern
coastal metro
centers.

Hawaii

Agreement signed by 12 stakeholders—including GM, utilities, hydrogen providers, DOD, DOE—to establish hydrogen as a major part of the solution to Hawaii's energy challenges.

- •15 GM FCEVs currently in demonstrations with military
- Renewable hydrogen (from geothermal and wind energy) will be used for buses
- Goals include a nascent refueling infrastructure on Oahu by 2015 to support initial deployments of government and industry FCEV fleets

Multiple platforms and technologies developed under NFCBP

- American Fuel Cell (AFCB) bus operating in SunLine Transit in California since late 2011
- Additional AFCB deliveries
 planned for SunLine Transit,
 Connecticut, Chicago, Ithica,
 NY, and Cleveland, Ohio

\$90 Million Federal investment Matched by over \$90 million in industry investment

Next generation fuel cell for transit development project, with improved power, durability, lower cost, transitioned to new partner

- Proterra bus operated in Austin, Texas and South Carolina
- Next Generation bus planned for Austin and Washington, DC
- FCB deliveries to other operators in CA and WA

Follow-on program could bring 50-100 additional fuel cell buses to U.S.

Southern CA Public Hydrogen Stations

Open

Burbank
Torrance
Newport Beach
Irvine
Fountain Valley
West LA
Thousand Palms
Harbor City

In Development

Beverly Hills
Diamond Bar (upgrade)
Hawthorne
Hermosa Beach
Irvine (upgrade)
Irvine North
San Juan Capistrano
Los Angeles
Santa Monica
West LA
Westwood

Funded in 2013

Anaheim Chino Mission Viejo Woodland Hills

Targets areas for future funding

Published more than 80 news articles this year (including blogs, progress alerts, DOE news alerts)

• Monthly Webinar Series – held 15 webinars

 Register at http://www1.eere.energy.gov/hydrogenandfuelcells/webinars.html

Announcements

- Launched NFCTEC (secure data center)
- Launched Hydrogen Safety Tools App for iPhone and iPad
- Launched Alternative Fueling Station Locator App

• Training and Workforce Development

 Trained more than 10,000 teachers and more than 26,000 code officials and first responders in person and online

Monthly Newsletter

 Visit the web site to register or to see archives -(http://www1.eere.energy.gov/hydrogenandfuelcells/newsletter.html)

Kyushu University was the Grand Prize Winner of the 2013 H₂ Student Design Contest!

President Obama inspects a fuel cartridge while at the Swedish Royal Institute of Technology.

Hydrogen fuel cell powers lights at entertainment industry events.

Hydrogen fuel cell powered light tower at Space Shuttle launch

Thank You

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov

Global Safety Collaboration

International Partnership for Hydrogen and Fuel Cells in the Economy Regulations, Codes and Standards Working Group

RCSWG provides a forum to exchange information, attain consensus, and develop recommendations to IPHE member countries to facilitate harmonization of key RCS.

Activities:

- Harmonized test measurement protocol for hydraulic and pneumatic testing of Type IV tanks. Hydraulic testing is complete.
- Fuel quality stack testing round robin to develop a harmonized testing protocol
- International "Safety Portal" on Lessons Learned (e.g.-H2incidents.org or HIAD databases) in deployment of hydrogen technologies

Images provided by IPHE member countries.

5th International Conference on Hydrogen Safety September 9-11, 2013 Brussels, Belgium

Purpose is to improve public awareness and trust in hydrogen technologies by communicating a better understanding of both hazards and risks associated with hydrogen

- Approximately 200 participants, 28 countries
- Topics included H2 Release and dispersion, Risk Management, Safety H2 infrastructure, Education, and RCS
- 1st Bilateral Webinar between U.S. and European Commission (~210 participants)
 What Can We Learn from Hydrogen Safety Event Databases?
 https://www1.eere.energy.gov/hydrogenandfuelcells/webinar archives 2013.html

International Conference on thychogen Safety 3 at 1 deptember 2013, Brussela by Safe

Tech Team Output: A standard test protocol and best practices would enable consistency in procedures and less variability in results from different labs

- Trends in catalyst activity and durability in RDE can be used to predict trends in PEMFCs.
- RDE is less challenging and less costly than membrane electrode assembly (MEA) preparation and testing.
- Variability in reported testing protocols introduces performance variability from different labs. Reported catalyst activity varies for the same materials by a factor of 2.

Example:

Rotational ink drying, based on spin coating technology, could be universally used as a reliable solution for drying electrocatalyst films

DOE solicited input for Stakeholders and the research community on a standard RDE test protocol

Test protocol and best practices to be validated and communicated in the near future

Criteria	Home	Community		
Min. dispensing pressure	350 bar			
Max. 1 kg dispensing time	10 hours 30 minutes			
Dispensable hydrogen	1 kg/day	4 kg/day		
Hydrogen purity	Meets SAE J2719			
Fill method	Meets appropriate standards for vehicle type			
Safety	Meets relevant safety standards; designs to be examined by safety experts			
Usability	Can be installed at intended locations (footprint, noise, etc.), usable with minimum			
	training and time – determined by judges			

	System	nstall Cost	Cost per kg		
Score	Home	Community	Home	Community	
1	\$25k/kg or less	\$15k/kg or less	\$8 or less		
2	20k/kg or less	\$12.5K/kg or less	\$7 or less		
3	\$15k/kg or less	\$10K/kg or less	\$6 or less		
4	\$10k/kg or less	\$7.5K/kg or less	\$5 or less		
5	\$5k/kg or less	\$5K/kg or less	\$4 or less		

	_	
	1	•
_		5
5		
	匸	
	\overline{c}	_
	_	,
_		
_		_
	σ	3
	7	5
	3	5
-	\succeq	5
-	\succeq	
-	\succeq	
	\succeq	
	\succeq	
	\succeq	

g

	Dispensed pressure		1 kg dispe	nsing time	1-kg fill	s per day	Tested Availability	
Score	Home	Community	Home	Community	Home	Community	Home	Community
1	350 bar or higher		10 hours or less	60 minutes or less	1 or more	4 or more	85% or higher	
2	430 bar or higher		8 hours or less	30 minutes or less	2 or more	10 or more	88 % or higher	
3	510 bar or higher		5 hours or less	15 minutes or less	3 or more	20 or more	91%	6 or higher
4	590 ba	ar or higher	2 hours or less	10 minutes or less	4 or more	40 or more	94% or higher	
5	700 ba	ar or higher	30 minutes or less	3 minutes or less	5 or more	50 or more	97% and above	

Northern CA Public Hydrogen Stations

- Open
 Emeryville
- In Development
 West Sacramento
- Funded in 2013

Cupertino Foster City Mountain View

Target areas for future funding

