

Global Hydrogen Systems Analysis

International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 30

IPHE Steering Committee Meeting Vancouver, Canada May 13-14, 2011

Co-operating Agents: Susan Schoenung (USA) and Jochen Linssen (Germany)

Task 30 Goal and Objectives

HIA Theme: Analysis that Positions Hydrogen

General objectives within task 30:

- build up a body of systems analysis expertise within the HIA
- collaboration with the IEA Analysts in order to support the IEA World Energy Outlook (WEO) and IEA Energy Technology Perspectives (ETP) with technical, economical data

Specific efforts of Task 30:

- Perform comprehensive technical and market analysis of H₂ technologies and resources, supply and demand related to projected use of H₂ in a sustainable low-carbon energy world.
- Assessment of H₂ technology maturity and H₂ projections to support preparation of authoritative analysis.

Task 30 Timeline

Definition Phase: 11/09-6/10 Kickoff: 9/16/10

Year 1: 9/10 - 9/11

Year 2 Year 3 - Dec. 2013

Task definition meetings

-Seville, 11/09 -Paris, 2/20/09

ExCo approval, 5/23/10

Kick-off, Julich, 9/16-17/10

Experts Meetings

Subtask C Paris mtg, 12/2/10 Experts mtg Paris, 3/22-23/11 Experts mtg DC, 9/28-29/11

On-going analysis
Quarterly webconferences
Interim outputs

ExCo meeting - Istanbul BSEC workshop 11/11

Systems Analysis
Database completion
Collaboration w IEA
Reporting
Outreach
Expert meetings
ExCo meetings

Task 30 Subtasks and Participants

Subtasks

 Subtask A: Detailed analysis of global hydrogen resources

Dr. Susan Schoenung, Longitude 122 West, Inc.

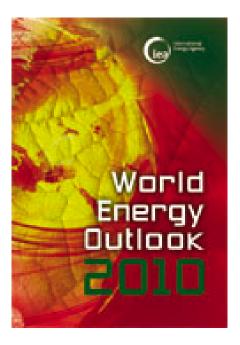
 Subtask B: Updating and harmonizing the database of H₂ technologies

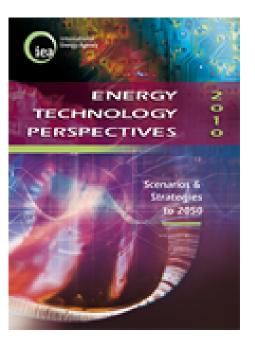
Mr. Jochen Linssen, Research Center, Jülich

Subtask C: Collaboration with IEA analytics team

Ms. Kari Aamodt Espegren, Institute for Energy Technology, Norway

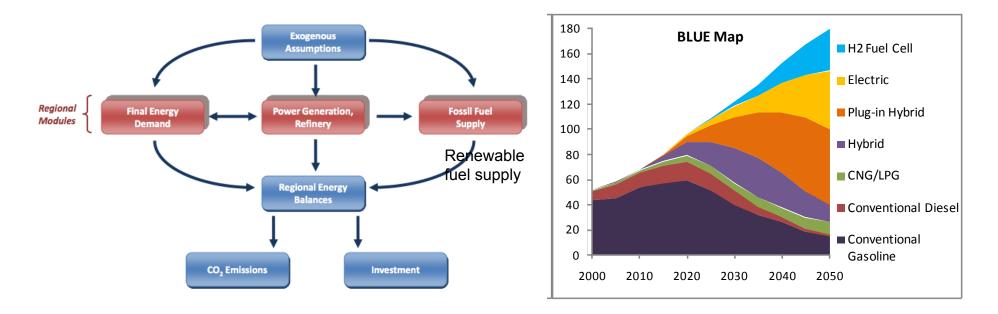
Participants:


- Canada
- France
- Germany
- Greece
- Italy
- Japan
- Norway
- Spain
- Sweden
- United States
- -----
- Australia
- Korea
- Denmark
- United Kingdom


Subtask C: Collaboration with IEA

Objective: Share most up-to-date hydrogen and fuel cell information; review assumptions

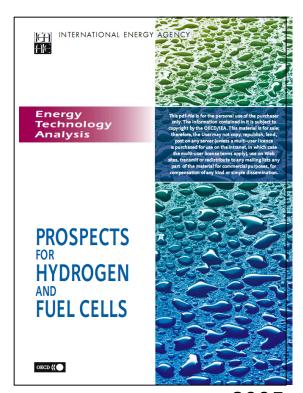
IEA Analytic Reports


- World Energy Outlook, which goes to 2030
- Energy Technology Perspectives, builds on the WEO and goes to 2050

Subtask C: Accomplishments - Collaboration

December 2010: First meeting with IEA analysts in Paris Information exchange, data access, contacts established March 2011: Second meeting with IEA analysts in Paris - WEO, ETP and Mobility Model analysts; **ongoing exchange**

World Energy Outlook Model


ETP Model Results

Subtask B: Update and Harmonize H₂ Knowledge

Objective: Update the assessment of H₂ technology maturity

Activities:

- Cross-border collaborations with other HIA tasks and IEA analysts regarding data and R&D progress
- Collection and preparation of relevant data for a comprehensive energy systems analysis in collaboration with other tasks and subtasks
- Data evaluation and technology gap analysis

2005

Subtask B: Accomplishments - Data Structure

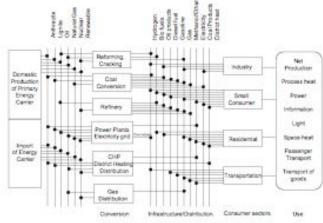
Hydrogen as Part of an Energy System

- The role of hydrogen
- Transition Strategies
- Targets in RD&D

Hydrogen production

- electrolysis, reforming fossil fuels and biomass; water splitting by nuclear and solar
- hydrogen production cost

Hydrogen transportation and distribution

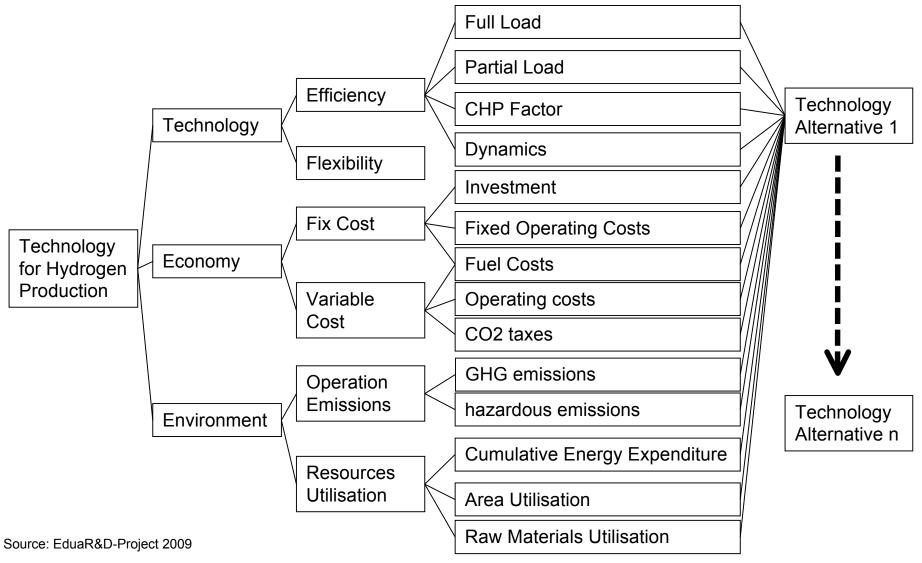

- Transportation pipeline, truck or ship
- Large scale hydrogen storage
- Hydrogen refueling stations

Mobile On-board hydrogen storage

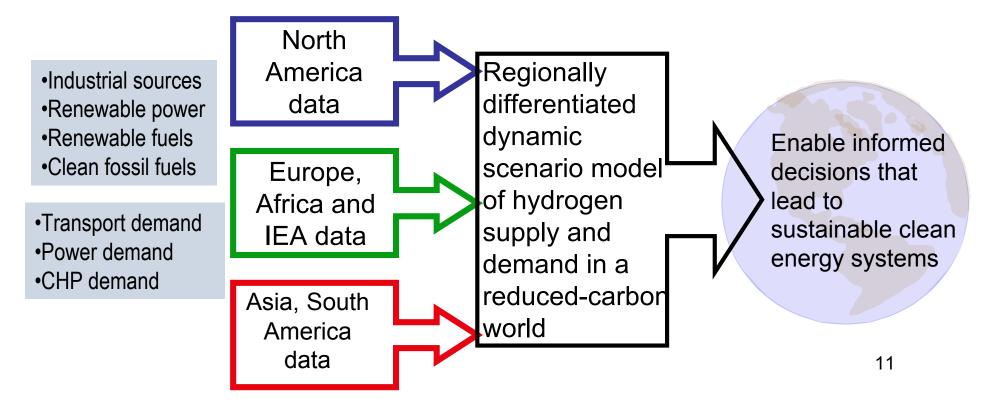
- Gaseous, liquid, solid storage

Hydrogen Applications

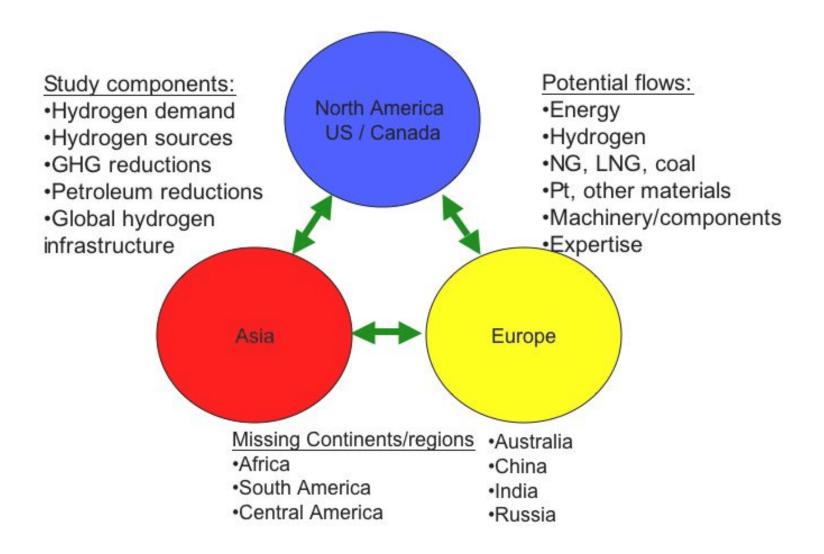
- Fuel cells
- Internal Combustion engines
- Chemical Feedstock
- other hydrogen end-use technologies



Subtask B: Accomplishments - Data Structure

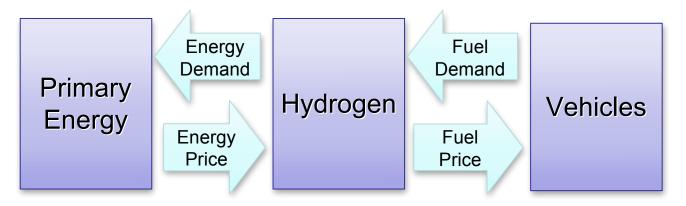


Subtask B: Accomplishments - Expert Review of ETP assumptions


Technology	Who	Status	Comments
Coal gasification with & w/o CCS	Jay Javier	Finished In progress	Currently internal to Task 30 members
Natural gas reforming with & w/o CCS	Jay, Javier	Finished Finished	
H ₂ from Nuclear & solar	Javier	In progress	
Biomass gasification	Bengt	Finished	
Electrolysis	Elli	In review	
Transportation	Sam	In progress	
Refueling	Sam	In progress	
Infrastructure technologies	Marcel (Task 28)	In progress	

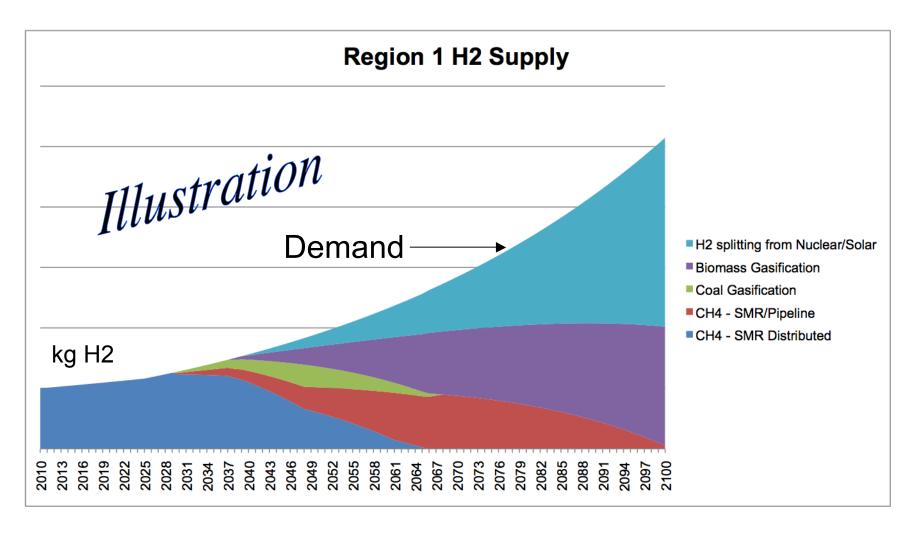
Subtask A: Global Hydrogen Resource Study

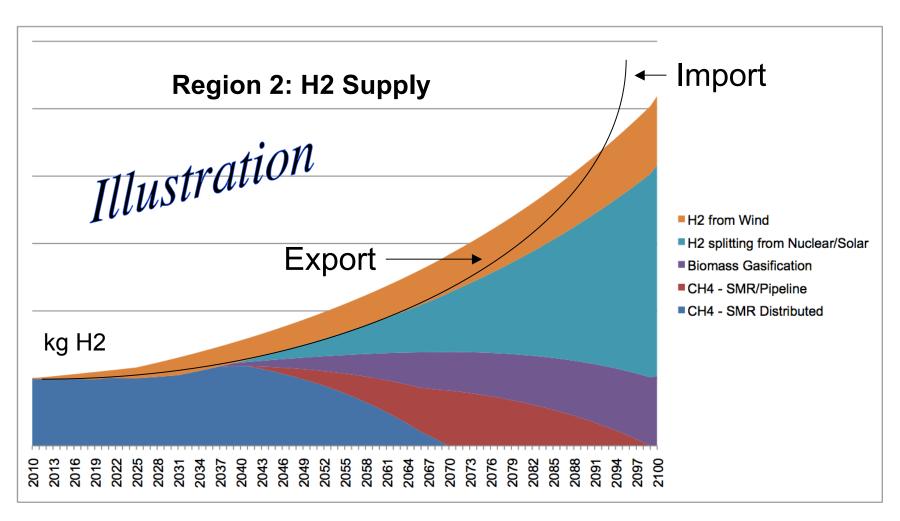
- Objective: Explore trends, impacts, consequences, flows
- Regional differentiation is key
- Activities: data gathering, modeling, authoritative analysis
- Deliverables: data sets, model, reports, papers



Global Impacts: What flows between nations?

Subtask A: Accomplishments - Modeling Initial analysis for light duty vehicles

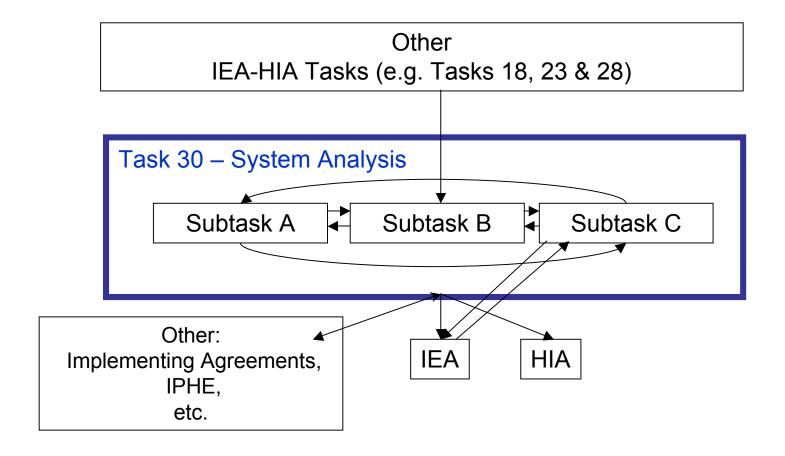

Systems Dynamic Modeling using PowerSim


US DOE / SNL talk focuses on USA Will be expanded to Global.

CSA Regions in ETP Model

Example 1: H_2 Supply = H_2 Demand (for vehicles)

Example 2: Supply > or < Demand


Subtask A: Analysis Inputs

Input	Parameters		
Hydrogen production, kg/year	Over time, from 2010 – 2050		
- Industrial	-Expected		
- from renewable sources	- projected or potential		
from fossil fuel sourcesfrom nuclear	-projected or potential- projected or potential		
Cost of hydrogen for vehicle fuel	Over time, from 2010 - 2050		
- from various sources, as above			
Cost of hydrogen infrastructure	- domestic delivery, etc.		
Hydrogen demand for vehicle fuel, kg/year	National plan or projection to 2050		
Hydrogen demand for stationary applications, kg/yr	Projections		
GHG emissions	National goals to 2050		

Subtask A: Accomplishments - Data

	Resources, kg/yr	Time dependence	Costs	Demand, kg/yr	Time dependence
Spain	✓	✓	✓	✓	✓
France	✓	✓		✓	✓
Norway	✓	✓	✓	✓	
Germany	✓	✓			
Canada	✓	✓		✓	✓
US	✓	✓	√	✓	✓
Greece	In progress				
Sweden	✓	✓		✓	✓
Italy	In progress?				
Japan	✓	✓		√	√

Task 30 Interactions

HIA Task 30 Global Hydrogen Systems Analysis

Concluding Remarks

- Task 30 is underway with 3 active Subtasks
- Data and analysis input from participating HIA members
- Good working relationship with IEA Analysis group
- Next experts meeting Washington DC area in Sept 2011
- Our goal of delivering authoritative, knowledge-based analysis to the HIA and world hydrogen community will be realized.
- More input is always better!

Thank you!

Susan Schoenung: susan.schoenung@sbcglobal.net

Jochen Linssen: j.linssen@fz-juelich.de

Kari Espegren: kari.espegren@ife.no

Public website: http://iea-hia-task30.com/