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Fundamental Energetics for
Reversibly Containing Hydrogen:

H, (contained) equilibrium:

For H, (gas)

AG = AH - TAS = -RTInK

For containing H, in a spontaneous process:

o AG<O0

e AH<O

e entropy (S) decreases from its’ gas phase value (31.1
cal/mole K)
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Known Enthalpies Ranges for
Physical and Chemical Stage

0 4 8 12 14 18 20
H, + Substrate(S) «<— S-H, H, + 2S5 — 2S-H
Weakly to strongly Strongly to weakly
physisorbed H, on chemisorbed H, on
Substrate Substrate
H, containment in H, containment in a solid
porous solid, reversible or liquid by temperature
by H, pressure and/or H, pressure

reversible chemistry
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Ranges for Various H, Storage
Technologies

Weak to
Moderate
Chemisorption

1 4.8 7 73 8 88 98 111 13 15 17.7 18.7°
LaNigH!? NaAlH, Na,AlH, diss.? MgH,
(1.8 atm, 25°C) diss.? (5.6wt%total) 1 atm~290°C
. ~7.5 wt %
TiFeO.9H0.7 H
(0.1 atm, 25°C) liquefaction
Naphthalene (C,,Hy) work
graphite/  sw carbon u
H, 77K nanotubes -
2 +H Decalin (C,,H,,)
2 ~7.4 Wt. %

Note: Lower Heating Value for H2 (LHV) = 57 kcal/mole

1G. Sandrock, J. Alloys and Compounds 293-295, 877 (1999)
2B. Bogdanovic, G. Sandrock, MRS Bulletin 712 (2002)
3W. Peschka, “Liquid Hydrogen Fuel of the Future” Springer-Verlag p. 65
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Storage Approach for Delivery to
a Fueling Station

PRODUCTION & DISTRIBUTION FUELING STATION
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. An off-board regenerable liquid carrier for
Approach: N )

vehicles and stationary H, gas delivery

ﬁ
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Liquid i
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Storage Tank : Catalyst <«<—— Heat Exchange [«— Fuel Cell
LQ A

st Lo )

Conformable shape liquid

LQ = liquid carrier
A = heat

tank with design to fatigyst
s o9 < 10 atm.

separate liquids; 22.5 LQ*H, + heat (AH) < > LQ+H,
gallons for 5 kg hydrogen P > 50 atm.
at 6 wt. % and unit density Catalyst
Heat exchange reduces Maximum energy efficiency: by (a) recovering the
the vehicles’ radiator load exothermic (-AH) of hydrogenation and (b) utilizing the

0 waste heat from the power source to supply the AH for
by ca. 40% (for AH of 12 the endothermic dehydrogenation.

kcal/mol H, and 50% FC
efficiency)
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Partial List of “Liquid Carrier”
Performance Criteria

Optimal heat of hydrogenation (10-13 kcal/mole H2),
enabling the catalytic dehydrogenation at unprecedented
temperatures (<200 °C)

Low volatility (b.p. > 300 °C), enabling the use of these
liquids in simplified systems onboard vehicles and
reducing exposure to vapors

Low toxicity and environmental impact

Clean catalytic hydrogenation and dehydrogenation,
enabling multiple cycles of use with no significant
degradation of the molecule

Manufacture of the liquid carriers from low cost, natural
source raw materials.
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Enthalpies of Hydrogenation as a

AHOC heat of reaction at (kcal/mol H,)

-10

'
—
—

-12

-1z

-14

-15

-16

-17

-18

-19

function of fused aromatic rings

Zuree 11
R A

urve I

5 10 15 20 25 20 35

Number of Rings

©AIir Products and Chemicals, Inc, 2005

40

AIR .
PRODUCTS 4=



Enthalpies of Hydrogenation as a
function of N substitution
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Dehydrogenation temperature for 95%
conversion at 1 atm. H, pressure

Temperature °C
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| | .

| |
Calculated Experimental
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Flow Measurement of Hydrogen
Generation from N-ethylcarbazole

250
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— Temp. (C)
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— H2 flow (sccm)

H2 delivered (wt. %) 2

Temperature (°C)
(% "3m) paqgiosap °H

50

0
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Time (min.)

GC/MS analysis after run termination showed loss of 5.7% wt H,
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Results: Cycling Studies

Dehydrogenation: Ramp from 25 °C to 200 °C, 15 psia H,
Hydrogenation: 170 °C, 1200 psia H,

O + o

Working Capacity (wt. %)

ha

0 2 4 6 8 10 12 14 16 18 20 22
Time {hrs.)

= Rapid hydrogenation and cycling stability
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N-ethylcarbazole Dehydrogenation:
(Ramp from 25 °C to 150 °C, 15 psia H,)

160
140
120
100
80
—H2 Desorbed (wt. %)

— Temp. (deg. C) 60
40

20

0
0 2 4 ) 8 10 12 14 16 18

Time (hr.)
Slow catalytic dehydrogenation rate at 150 °C
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H2 desorbed (wt. %)

Dehydrogenation Catalyst Screening
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Time {min.})

Over 40 catalysts screened in last 3 months
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CONTINUOUS PACKED BED REACTOR
(DOWNFLOW OPTION)
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Hydrogen Flow Rate, cc/min.
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Packed Bed Dehydrogenation
Demonstration

190 °C; 0.25 ml./min. Liquid Flow

g T e —u

Continuous Dehydrogenation
Followed by Batch Hydrogenation
Six Consecutive Runs

Using Same Feed

1 2 3 4 ) 6 7

Use Number

YA
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H, Quality from Continuous Flow
Dehydrogenation Experiments

Component Mole %

Hydrogen 99.9+
Methane 0.0013%
Ethane 0.0083%
Carbon Monoxide ND

N containing compounds ND
C3’s ND
Cé4’s ND
Cb’s ND
C6’s ND

ND — Non Detectable
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Dehydrogenation Video Clip

Perhydro-N-
ethylcarbazole

Pd/Al, O, catalyst

Temperatures: 100-
200°C
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Technical Challenges:
Molecule and Catalyst

Development and testing of new liquid
carriers:

optimal heats of hydrogenation
Increase hydrogen capacity

modify substrate melting points (eg. by the
use of mixtures of multiple substrates)

Development of new dehydrogenation
catalysts:

Increase rates at low temperatures
selective dehydrogenation

transfer of catalyst knowledge to reactor
design activities

/.
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