

Hydrogen Storage and Delivery by Reversible Hydrogenation of Liquid-phase Hydrogen Carriers

<u>Alan C. Cooper</u>, Donald E. Fowler, Aaron R. Scott, Atteye H. Abdourazak, Hansong Cheng, Frederick C. Wilhelm, Bernard A. Toseland, Karen M. Campbell, Guido P. Pez

Corporate Science and Technology Center, Computational Modeling Center, and Advanced Materials Division Air Products and Chemicals, Inc.

Fundamental Energetics for Reversibly Containing Hydrogen:

 \succ For H₂ (gas) \longleftarrow H₂ (contained) equilibrium:

$$\Delta G = \Delta H - T\Delta S = -RTInK$$

> For containing H₂ in a spontaneous process:

- ∆G<0
- ∆H<0
- entropy (S) decreases from its' gas phase value (31.1 cal/mole K)

The greater variable contribution to ΔG is from ΔH

Known Enthalpies Ranges for Physical and Chemical Stage

 H_2 + Substrate(S) \leftarrow S- H_2

 $H_2 + 2S \longrightarrow 2S-H$

Weakly to strongly physisorbed H₂ on Substrate

 H_2 containment in porous solid, reversible by H_2 pressure Strongly to weakly chemisorbed H₂ on Substrate

H₂ containment in a solid or liquid by temperature and/or H₂ pressure reversible chemistry

Ranges for Various H₂ Storage Technologies

Note: Lower Heating Value for H2 (LHV) = 57 kcal/mole

¹G. Sandrock, J. Alloys and Compounds 293-295, 877 (1999)
²B. Bogdanovic, G. Sandrock, MRS Bulletin 712 (2002)
³W. Peschka, "Liquid Hydrogen Fuel of the Future" Springer-Verlag p. 65

Storage Approach for Delivery to a Fueling Station

Approach:

An off-board regenerable liquid carrier for vehicles and stationary H₂ gas delivery

- Conformable shape liquid tank with design to separate liquids; 22.5 gallons for 5 kg hydrogen at 6 wt. % and unit density
- Heat exchange reduces the vehicles' radiator load by ca. 40% (for ∆H of 12 kcal/mol H₂ and 50% FC efficiency)

LQ*H₂ + heat (Δ H) P < 10 atm. P > 50 atm.Catalyst P > 50 atm.

Maximum energy efficiency: by (a) recovering the exothermic (- Δ H) of hydrogenation and (b) utilizing the waste heat from the power source to supply the Δ H for the endothermic dehydrogenation.

Partial List of "Liquid Carrier" Performance Criteria

- Optimal heat of hydrogenation (10-13 kcal/mole H2), enabling the catalytic dehydrogenation at unprecedented temperatures (<200 °C)</p>
- Low volatility (b.p. > 300 °C), enabling the use of these liquids in simplified systems onboard vehicles and reducing exposure to vapors
- Low toxicity and environmental impact
- Clean catalytic hydrogenation and dehydrogenation, enabling multiple cycles of use with no significant degradation of the molecule
- Manufacture of the liquid carriers from low cost, natural source raw materials.

These are not completely satisfied by known organic liquid carriers (eg. cyclohexane, decalin)

Enthalpies of Hydrogenation as a function of fused aromatic rings

Fused multi-ring aromatic systems desirably lower ΔH

PRODU

Enthalpies of Hydrogenation as a function of N substitution

Number of Rings

Inclusion of N heteroatoms can greatly lower ΔH

Dehydrogenation temperature for 95% conversion at 1 atm. H₂ pressure

11

Flow Measurement of Hydrogen Generation from N-ethylcarbazole

GC/MS analysis after run termination showed loss of 5.7% wt H₂

Results: Cycling Studies

Dehydrogenation: Ramp from 25 °C to 200 °C, 15 psia H₂ Hydrogenation: 170 °C, 1200 psia H₂

N-ethylcarbazole Dehydrogenation: (Ramp from 25 °C to 150 °C, 15 psia H₂)

Dehydrogenation Catalyst Screening

Over 40 catalysts screened in last 3 months

CONTINUOUS PACKED BED REACTOR (DOWNFLOW OPTION)

Packed Bed Dehydrogenation Demonstration

©Air Products and Chemicals, Inc, 2005

H₂ Quality from Continuous Flow Dehydrogenation Experiments

Component	Mole %
Hydrogen	99.9+
Methane	0.0013%
Ethane	0.0083%
Carbon Monoxide	ND
N containing compounds	ND
C3's	ND
C4's	ND
C5's	ND
C6's	ND

ND – Non Detectable

Dehydrogenation Video Clip

Perhydro-Nethylcarbazole Pd/Al₂O₃ catalyst Temperatures: 100-200°C

Technical Challenges: Molecule and Catalyst

- Development and testing of new liquid carriers:
 - optimal heats of hydrogenation
 - increase hydrogen capacity
 - modify substrate melting points (eg. by the use of mixtures of multiple substrates)
- Development of new dehydrogenation catalysts:
 - increase rates at low temperatures
 - selective dehydrogenation
 - transfer of catalyst knowledge to reactor design activities

Acknowledgements

- Sergei Ivanov
- Larry Bagzis
- U.S. Department of Energy EERE Hydrogen, Fuel Cells & Infrastructure Technologies Program
 - Sunita Satyapal
 - Grace Ordaz

