Catalytic Effect of Zr and Hf on Hydrogen Absorption/Desorption of NaAIH₄ and LiAIH₄

Y Suttisawat^a, P Rangsunvigit^a, B Kitiyanan^a, NJ Muangsin^b, S Kulprathipanja^c

^a THE PETROLEUM AND PETROCHEMICAL COLLEGE, CHULALONGKORN UNIVERSITY, BANGKOK 10330, THAILAND ^b DEPARTMENT OF CHEMISTRY, CHULALONGKORN UNIVERSITY, BANGKOK 10330, THAILAND ^c UOP LLC, 50 EAST ALGONQUIN Rd., DES PLAINES, ILLINOIS 60017, USA

Doped metal species : HfCl₄ ZrCl₄ (0-9 mol%) Doping method : Mortar, Centrifugal ball mill

2. Condition

Desorption : Room temperature - 270 °C Absorption : 11 MPa 120 °C

reabsorbed on the catalyzed NaAlH₄.

Mixing NaAlH, with HfCl, by ball mill resulted in a solid state reaction.

+ Doping ZrCl₄ and HfCl₄ on LiAlH₄ enhanced the kinetics of desorption and hydrogen capacity is up to 6 wt% but rehydriding on LiAlH, was not observed with any of the transition metals.

- Ratchadapisek Somphot Endowment Fund
- Reverse Brain Drain Project (RBD)

The Petroleum and Petrochemical Technology Consortium, Chulalongkorn University

UOP LLC