

Government Perspective (Japan)

- Basic Hydrogen Strategy -

April 10

Masana Ezawa

Director, Hydrogen and Fuel Cell Strategy Office, Ministry of Economy, Trade and Industry (METI), Japan

Mission/ Background

1

- Japan's Responsibility for Energy Transition
 - ⇔ Energy trilemma
 - ✓ Energy security
 - ✓ Environment (Sustainability)
 - ✓ Economic affordability (Cost)

• Measures;

- ✓ Energy saving
- ✓ Renewable energy
- ✓ Nuclear energy
- ✓ CCS + Fossil fuels
- ✓ Hydrogen

3"E" + Safety

Japan's Primary Energy (FY2016)

Why Hydrogen?

• Contribution to 3"E"

- ✓ Contribute de-carbonization (Environment)
- ✓ Mitigate dependence on specific countries (Energy security)
- ✓ Enable to utilize low cost feedstock (Economic affordability)
- + Japan's edge in technology since 1970s

• Roles of H_2 in Electrified Mobility/ Generation Mix

Direction of Activities to Realize a "Hydrogen Society"

Basic Hydrogen Strategy

- "Basic Hydrogen Strategy" (Prime Minister Abe's Initiative)
 - \checkmark World's first national strategy
 - ✓ 2050 Vision: position H₂ as a new energy option (following Renewables)
 - ✓ Target: make H₂ affordable
 (\$3/kg by 2030 ⇒ \$2/kg by 2050)

3 conditions for realizing affordable hydrogen

• Key Technologies to be Developed

Basic Hydrogen Strategy (Scenario)

		Cı	urrent		2020		2025	>	2030	>	2050	
Supply		(as of March 2019)		International								
		Domestic H ₂ -		(RD&D)		> H ₂ Supply Chains		\longrightarrow CO ₂ -free H ₂				
						Domestic Power-to-gas						
Volume (t/y) 200		4k					300k		5 ~ 10m	
Cos	st (\$/kg)) .	~ 10						3		2	
	و ک	Large Power Plant		(RI	D&D)			>	1 GW -	→ 1	5~30G	W
Demand	ene- ation	FC CHP* *Primary energy.r	274k — naturalgas.	1	.4m -			-	5.3m	\rightarrow (Replace Old Syster	ns
		HRS	103 —		160 —		320 —	-	(900)	$\rightarrow F$	Replace Filling Stati	ons
	Mobi	FCV	3.0k —	(40k —		200k		800k	F	Replace	
	lity	FC Bus	18 —	· ·	100 —			-	1.2k	\longrightarrow (Conventio	nal
		FC FL	160 —		500 —				10k	Mobility		
		Industry Use				·-· (RD	&D) ·-		>	Expan	d H ₂ Use)

Summary of the Strategic Road Map for Hydrogen and Fuel Cells

Set of new target to achieve (Spec for basic technologies and cost breakdown goals)

- ✓ Price difference between FCV and HV: ¥ 3m → ¥0.7m
- ✓ Main FCV System cost, FC : $\pm 20,000/kW \rightarrow \pm 5,000/kW$,

Storage : $\pm 0.7 \text{m} \rightarrow \pm 0.3 \text{m}$

- ✓ HRS Construction cost: $¥350m \rightarrow ¥200m$
- ✓ HRS Operating cost: ¥34m/year → ¥15m/year
- ✓ HRS components cost

Compressor: $\$90m \rightarrow \$50m$ Accumulator: $\$50m \rightarrow \$10m$

 \checkmark Production cost from brown coal gasification:

several hundreds JPY/Nm3→ ¥12/Nm3

✓ Electrolyzer Cost: $¥200,000m/kW \rightarrow ¥50,000/kW$

The Strategic Road Map for Hydrogen and Fuel Cells \sim Industry-academia-government action plan to realize Hydrogen Society \sim (overal)

- In order to achieve goals set in the Basic Hydrogen Strategy,
- ① Set of new targets to achieve (Specs for basic technologies and cost breakdown goals), establish approach to achieving target
- 2 Establish expert committee to evaluate and conduct follow-up for each field.

Goals in the Basic Hydrogen Strategy		Goals in the Basic Hydrogen Strategy	Set of targets to achieve	Approach to achieving target		
Use	Mobility	FCV 200k b y2025 800k by 2030	2025Price difference between FCV and HV $(¥3m → ¥0.7m)$ • Cost of main FCV systemFC ¥20,000/kW → ¥5,000/kW Hydrogen Storage ¥0.7m → ¥0.3m	 Regulatory reform and developing technology 		
		HRS 320 by 2025 900 by 2030	2025 • Construction and operating construction cost ¥350m → ¥200m costs Construction cost ¥350m → ¥200m • HRS components cost Compressor ¥34m/year → ¥15m/year	 Consideration for creating nation wide network of HRS Extending hours of operation 		
		Bus 1,200 by 2030	$ \begin{array}{c} \mbox{Accumulator} \pm 50m \rightarrow \pm 10m \\ \hline \underline{Early} \\ \underline{2020s} \\ \hline & \\ \hline \\ \hline$	• Increasing HRS for FC bus		
	Power	Commercialize by 2030	2020 ● Efficiency of hydrogen power generation(26%→27%) %1MW scale	 Developing of high efficiency combustor etc. 		
	FC	Early realization of grid parity	2025 • Realization of grid parity in commercial and industrial use	Developing FC cell/stack technology		
Supply	Fossil +CCS Fuel +CCS	Hydrogen Cost ¥30/Nm3 by 2030 ¥20/Nm3 in future	 Early 2020s Production: Production cost from brown coal gasification (¥several hundred/Nm3→ ¥12/Nm3) Storage/Transport : Scale-up of Liquefied hydrogen tank (thousands m³→50,000m³) Higher efficiency of Liquefaction (13.6kWh/kg→6kWh/kg) 	 Scaling-up and improving efficiency of brown coal gasifier Scaling-up and improving thermal insulation properties 		
	Green H2	System cost of water electrolysis ¥50,000/kW in future	 2030 Cost of electrolyzer (¥200,000m/kW→¥50,000/kW) Efficiency of water (5kWh/Nm3→4.3kWh/Nm3) electrolysis 	 Demonstration in model regions for social deployment utilizing the achievement in the demonstration of Namie, Fukushima Development of electrolyzer with higher efficiency and durability 		

Hydrogen Cost Targets

- In order to achieve grid parity, Hydrogen cost is needed to be lower than price of natural gas.
- Target of hydrogen importing cost in Japan has to be ¥13/Nm³ in future (US\$1.3/kg, equivalent to US\$10/MMBtu).

%assuming carbon price as \$50/t-CO2

from World Energy Outlook 2018 (IEA)

Hydrogen Cost Perspective of the Supply Chain Project

- Target cost of hydrogen supply in 2030 is $\pm 30/Nm^3$.
- Natural gas price is unpredictable, however further cost reduction is needed.

Ongoing Projects (Supply-side)

Ongoing Projects (Demand-side)

11

G20 Ministerial Meeting on Energy Transitions and Global Environment for Sustainable Growth

- Date: June 15th, 16th, 2019
- Venue: Karuizawa, Japan
- Expected outcome :
 - ✓ Communique
 - \checkmark Action Plan
- Hydrogen
- ✓ The importance of hydrogen will be referred in the Communique and Action Plan.
- * It will be the <u>first time</u> to be mentioned on hydrogen in G20 Ministerial Communique.
- \checkmark Hydrogen Report will be released at G20 by IEA
- ✓One of the main themes of G20 Exhibition in Karuizawa is Hydrogen.
- ✓ Over FCVs are used for transportation of Ministers in the venue
- $\checkmark\,$ Presentation and input about hydrogen by Hydrogen Council

Hydrogen Energy Ministerial Meeting

- Date / Place: October 23rd, 2018 / Dai-ichi Hotel Tokyo
- Organized by: METI, New Energy and Industrial Technology Development Organization
 (NEDO)
- Participants: 300 people including representatives from 21 countries, regions, international organizations, etc.*

*Japan, Australia, Austria, Brunei, Canada, China, France, Germany, Italy, the Netherlands, New Zealand, Norway, Poland, Qatar, South Africa, Korea, United Arab Emirates, United Kingdom, United States, European Commission, IEA Participants :

PROGRAM

Ministerial Session

Industry and International Organization Session

- Plenary Session: Potential of Hydrogen Energy for Energy Transition
- Session 1: Expansion of Hydrogen Use Mobility & H2 Infrastructure -
- Session 2: Upstream & Global Supply-chain for Global Hydrogen utilization
- Session 3:Renewable Energy Integration & Sectoral Integration

Tokyo Statement

We share the view that hydrogen can be a key contributor to the energy transitions underway to clean energy future and an important component of a broad-based, secure, and efficient energy portfolio. Also, we confirmed the value of collaborating on the following four agendas on "Tokyo Statement" to achieve a "Hydrogen Society".

Harmonization of Regulation, Codes and Standards
 International Joint R&D emphasizing Safety

- Study and Evaluate Hydrogen's Potential
- \bullet Communication, Education and Outreach

*Hydrogen Energy Ministerial Meeting 2019 is scheduled for September 25th in Tokyo. (tentative)