Hydrogen from Nuclear Energy:

A Canadian R&D perspective

IPHE Steering Committee Meeting Paris, France 26-28 January 2005

Comments on Nuclear Energy and Hydrogen

- Huge potential and benefit
- Issue is cost of manufacturing and infrastructure
- Distributed vs. centralized production and phased introduction
- Derive benefits and potential via UNIPCC scenarios and market data
- Not focussed on a single reactor type or technology path
- Focussed on logical nuclear reactor development pathways, economics, markets and technology options
- Proposed synergism potential of nuclear (base load) with renewables (intermittent) in competitive power markets
- Hydrogen penetration is timed in transition, and initially tuned to distributed electricity and transportation
- Large central industrial use potential (oil sands, refineries and chemical plants)
- Emphasize available applications technologies

Advanced development vision

Nuclear + Hydrogen R&D Areas

- Key Driver: use of nuclear energy for hydrogen-enhanced energy economy, with low GHG emissions
- Collaborative Areas for R&D
 - Complementary production options under Generation IV
 - *Higher temperature direct methods VHTR*
 - Lower temperature options SCWR
 - Electro-steam reforming, plasmolysis, low-cost conventional electrolysis
 - Utilization options Fuel cells, hydrogen safety program
 - Timescales compatibility Potential N + H₂ indirect (c 2010+) and direct (c2030) production consistent with renewables introduction (2005+), carbon market shifts (2010+) and hydrogen in transportation (2010-2020+?)
 - Nuclear + Hydrogen impacts assessment and modeling for substitution of nuclear energy through conversion to H₂, and enabling economic hydrogen production

Setting the Scope and the Scale

Potential Impacts of a More Diverse Generation Mix

Examine vigorous displacement of carbon-emitting energy, especially coal for power and oil for autos

- Displace 80% of coal-fired electricity (between 2010 and 2030)
- Convert 80% of transportation to hydrogen (from non-C sources) between 2020 and 2040
- ➤ In line with 60% carbon reduction target for stabilization
- The replacement energy sources must only be near-zero carbon emitters
 - ➤ Nuclear
 - > Wind, solar, hydraulic, etc.
 - Carbon-based with sequestration

Example using IPCC B2: Extent of Potential Nuclear Substitution is Large

	World Totals (EJ/a)											
	IPCC				IPCC + N				IPCC + N + H2			
Year	С	Ν	R	Т	С	Ν	R	Т	С	Ν	R	Т
1990	289	24	24	337	289	24	24	337	289	24	24	337
2000	336	26	30	392	336	26	30	392	336	26	30	392
2010	429	35	39	503	399	47	39	485	399	47	39	485
2020	569	51	50	670	473	90	50	612	438	103	50	592
2030	732	79	70	881	493	175	70	737	383	219	70	672
2040	928	108	100	1136	614	234	100	947	391	323	100	814
2050	1156	137	138	1431	776	289	138	1203	499	400	138	1037
2060	1295	155	201	1651	937	298	201	1436	626	423	201	1249
2070	1421	177	254	1852	1075	315	254	1645	734	452	254	1440
2080	1534	201	297	2032	1191	338	297	1826	823	486	297	1605
2090	1483	217	352	2052	1069	383	352	1803	713	525	352	1590
2100	1433	233	407	2073	947	427	407	1782	603	565	407	1575

N = Nuclear; C = Carbon; R = Renewables; T = Total

IPCC energy use definitions imply 2.5C units displaced = 1 N unit

Reduced Projections of CO₂ Concentrations due to Nuclear + H₂

Carbon dioxide Concentration

The impact of N+H₂ is globally significant...even for aggressive future energy use

Delay carries a heavy penalty

Global ΔT for switch from B2 to B2+N+H₂

Global ΔT for switch from A1FI to B2+N+H₂

Year of	Start 2010	Start 2020	Start 2030	Start 2040	nic	Year of	Start 2010	Start 2020	Start 2030	Start 2040
2030	0.67	0.67	0.67	0.67		2030	0.67	0.67	0.67	0.67
2040	0.81	0.86	0.86	0.86		2040	0.81	0.97	0.97	0.97
2050	0.89	1.00	1.05	1.05		2050	0.89	1.17	1.31	1.31
2060	0.95	1.09	1.20	1.25	K	2060	0.95	1.33	1.58	1.71
2070	1.07	1.16	1.29	1.39	men	2070	1.01	1.48	1.81	2.03
2080	1.07	1.22	1.36	1.48		2080	1.07	1.60	2.01	2.30
2090	1.13	1.28	1.41	1.55		2090	1.13	1.68	2.13	2.49
2100	1.18	1.34	1.48	1.61	En	2100	1.18	1.77	2.24	2.63
				Tech	-	se	re			

Best estimates of where we are going (changes from 1990)

The Appearance of N+H₂

N = nuclear H₂ = hydrogen for transport

The Distributed Future: Stuart Energy Vision (source: SES 2003)

Centralized N+H₂ Vision: Nuclear Steam and Hydrogen for Upgrading Bitumen/Heavy Oil plus Electric Power for Plant Operations

Reduce carbon intensity
Avoid ~12 Mt CO₂ per year
Free up the gas and oil reserves.

Additional Issues for Thermochemical H₂

- Intrinsically centralized
 - So will have distribution costs
- Cannot switch to selling electricity instead of H₂
- For large-scale industrial use, will need a secure supply through a back-up source
 - One approach applicable to any reactor-based H_2 supply is to have a hybrid supply where one usually depends for 50% of the H_2 on an SMR
 - By oversizing the SMR's base capacity by a factor of 2, it can then double its output very rapidly

The Introduction of the N+H₂ Solution

N = nuclear H₂ = hydrogen for transport

Short Term: Making Hydrogen by Electrolysis

- Always important to keep the capital cost of the electrolysis low
 - Particularly true if not run continuously
- Essential that the input electricity be low-cost and clean
 - Significant cost reduction off peak
 - Peak-average difference is likely to grow if carbon replaced by nuclear
- Electrolysis is flexible and avoids need to build distribution networks before the demand is extensive (i.e. > 5 to 10 percent)
- Allows conversion to begin in the relatively near future (c 2005 2010+)
 - Electricity at 30 US\$/kW.h from reactors will be available
 - Grid is already available as is cell technology
- Need off-peak electrolysis to compete on cost
- Higher temperature electrolysis (SOFC) offers even higher efficiency
- Opportunity to switch hydrogen production of H₂ and Electricity synergistically between nuclear and renewable generation modes

Electricity cost target is realistic

The target Gen III + cost is ~ 30 US\$/MW.h at generation site

- Based on proven build experience
- Innovations in design lower the capital cost
- Confirmed as competitive with coal and gas by studies in many countries
- Advanced GenIV plants should be even cheaper

Turning electricity into H₂

- Prices in open electricity markets are highly variable
 Not just by the hour and the day but from year to year
- With 30 US\$/MW.h electricity, a reactor operator can smooth the market by selling a blend of electricity (at times of peak demand and price) and hydrogen at other times and make a good profit
- Set a H₂ production rate (as a proportion of all-H₂ production)
 - > Apply to actual hourly electricity price data and minimize cost of H_2 production while maintaining constant H_2 supply by optimizing:
 - The size of the electrolysis installation
 - The size of storage
 - The Rules on when to switch on electrolysis
 - > Value H₂ at 2000 US\$/tonne (the DOE's centralized plant target)

N + R + H₂: wind added to extent preferred by optimization

- Results are per MW of nuclear augmented by whatever the optimizer likes for additional capacity of ~ 33 or 42%-available wind, distributed according to historical capacity data
- Wind and nuclear production costs for electricity are assumed exactly equal at 30 \$US/MW.h (GenIII+ and wind costs)
- Power from both sources dispatched to the grid whenever the price is high (according to optimized thresholds)
- Wind takes advantage of the excess capacity needed in any case to rebuild H₂ inventory after production interruptions
- Wind also feeds extra current to the H₂ cell (which has been designed to accept this via ~10% greater capital cost than normal and a voltage penalty)
- The results show:
 - High proportion of wind capacity supported by nuclear
 - Affordable cost of producing H₂ using hybrid power
 - Electricity price and hydrogen price are coupled

N+R+H₂:

Real time market pricing and hydrogen cost optimization is a complex interplay

Wind as Percentage of Maximum

Distributed Hydrogen Production Perspective

- Studied in earlier analyses using grid to transmit
 - Small scale (1 tonne/d H₂)
 - Contains more uncertainty
 - Especially over cost of distributing electricity
- Distributed electrolytic production of H₂ should be more competitive with SMR at small scales
 - Avoids considerable cost of H₂ distribution
 - Attractive for early low-demand stages of H₂ market
 - Small local SMRs are possible, though more expensive per unit of output, but would not likely be able to sequester CO_2

Estimated Costs of Hydrogen Manufacture (Typical relative values)

Costs per Tonne of Hydrogen								
Large SMR	Methane	Capital	CO_2		Distribution	Total		
(250 tonne/d;	nne/d;		Sequestration					
5 \$/GJ nat. gas)	744	200 27		5	>2000	>3200		
Small SMR	Methane	Capit	al		CO_2	Total		
(0.3 tonne/d;)		-		Sequestration				
5 \$/GJ nat. gas)	744	2000		275		3019		
Service Station	Service Station Electricity		Production		Storage			
Electrolytic H ₂		Equipn	nent					
(0.3 tonne/d)	1231	556			39	1826		
Home Electricity		Production		Storage		Total		
Electrolytic H ₂		Equipment						
(0.4 kg/d)	2093	1689	9	0		3962		

Technical and Research implications

- Approach presented is a demonstration that N+H₂ makes sense: electrolytic H₂ can meet the US DOE's target for production cost
- To realize the full advantage of H₂, need to utilize its capacity for distributed, modularized production, and R&D on alternate options is desirable
- Nuclear (CANDU Gen III+) track record offers attractive route to clean H₂
- Future GenIV and GenV nuclear concepts are actively being researched
- Mark-up for electricity distribution is crucial
 - Making $\rm H_2$ when electricity demand is off-peak should not require grid expansion
 - In line with drive toward time-of-day pricing to have time-of-day distribution costs
- Potential to integrate and optimize nuclear and wind generation
 - Cells can be operated at higher current and voltage
 - Hydrogen becomes a true currency, made and stored when cheap to make

Conclusions: a sustainable future

- A switch to mostly nuclear energy for electricity and to hydrogen for transportation will indeed stabilize emissions, and broaden the sustainable energy base
- The extent of market penetration depends on meeting the cost targets for new nuclear plants and hydrogen-powered autos
- Electricity from nuclear can be profitably produced at 30 US\$/MW.h giving mixed sales of electricity and H₂ sales at prices matching the H₂ target (\$2000/t) cost
- Dedicated production of Hydrogen for 100% of the time using electrolytic systems is *uneconomic in all case studies of real market data*
- Producing a mix of Hydrogen and electricity is consistently economic with $50\% \pm 20\%$ of the electricity used to produce H₂
- Hydrogen is a very attractive co-product for a nuclear plant, where operating costs are very low and base-loading highly desirable
- Nuclear and wind synergism is a key result, and is possible today with time of day pricing

0

1990 2000 2010 2020 2030 2040 2050 2060 2010 2080 2090 2100

Appendix: Extra Technical Slides

Affordable – Cost Competitive H₂

Option	1	2	3	4	5
Concept Configuration	Remote SMR with pipeline	Remote SMR with trucks	Local SMRs	Local electrol. with off-peak electricity	Local electrol. operating continuously
Unit production size (Mg/d)	10	10	1	1	1
SMR or electrolysis capital cost (M\$)	One at 9	One at 9	Ten at 2	Ten at 0.844	Ten at 0.703
Storage Configuration and Capital (M\$)	Ten at 0.2	Ten at 0.4	Ten at 0.2	Ten at 0.28	Ten at 0.2
Production and storage capital (M\$)	11	13	22	11.2	9.0
Capital charge for production + storage (M\$/a)	2.2	2.6	4.4	2.2	1.8
Capital charge (\$/GJ)	4.2	5.0	8.5	4.2	3.5
Energy cost (\$/GJ)	7.3	7.3	7.3	12.8	15.6
Distribution cost (\$/GJ)	13.3	5.9	0	0	0
Carbon charge (\$/GJ)	1.6	1.6	>>1.6	0	0

Affordable – Adding up to

Costs are for systems supplying 10 tonnes H₂/day

Option	1	2	3	4	5
Concept	Remote SMR + Pipeline	Remote SMR + Trucks	10 Local SMRs	10 Local Electrolysis with off-peak power	10 Local Electrolysis running full- time
Total (\$/GJ)	26.4	19.8	>>17.4	17.0	19.1
Total (\$/tonne H ₂)	3750*	2810*	>>2470	2410	2710
Total (\$/tonne H ₂)	TotalWith 600 \$/kW cellsS/tonne H2)		cells	2870	3010
Total (\$/tonne H ₂)	Total \$/tonne H_2)If electricity is +1 \$/MW.h		/MW.h		2765

CO₂ sequestration cost is 37 \$/t CO₂
 A change of 10 \$/t CO₂ = 61 \$/t H₂

What would "Off-Carbon" look like?

- For B2, in Canada:
 - Replace 80% of coal-fired electricity with nuclear by 2030
 - Between 2020 and 2040, replace 80% of road-transport with nuclearproduced H₂
 - 32 new reactors of 1000 MW by 2030 (one every 7.5 months over 20 years starting in 2010)
 - + 12 more new reactors of 1000 MW by 2040
 - Compare 1971-1993 when 22 reactors entered service in Canada
- For B2, worldwide
 - ➤ 430 existing reactors would grow to ~4700
 - Uranium supply should suffice with existing reactor types, but can
 - ✓ Recycle fuel and use thorium: can last for 100s of years
 - ✓ Using only 1-2% of the resource; breeder reactors will last for millennia

Home-Produced Hydrogen

- Average Canadian car covers 21 000 km/a
- With a fuel cell, would need about 160 kg of H₂
 - Based on 2.1 volts = 9.1 MW.h/a
 - Assume retail off-peak power at 37 \$/MW.h (including 20 \$/MW.h of distribution costs) available 75% of time in Alberta in 2002
 - Electricity cost is 337 US\$/a (and needs 14.2 h/d for average demand)
 - Home-refueller electrolysis unit at 2000 US\$ (for 1.7 kW unit), 6% financing over 10 years = 272 US\$/a
 - Total of 610 US\$/a
- Gasoline at 45 ¢/L (which includes taxes)
 - Annual 836 US\$/a for a typical 11.3 L/100 km car (20.8 mpg)

And if one reversed the power flow?

- The figures are very approximate but:
 - In terms of fuel costs, H₂ is competitive
 - Interesting possibility of reversing the current
 - Not efficient (0.7 x 0.5) but pays if selling price for electricity is x3 of the buying price.
 - In Alberta in 2002, paid an average of 240 US\$/MW.h for top 2.5% of time
 - Fuel cell can deliver 15.4 MW.h/a
 - Even 1% of time at that price, could earn 37 US\$/a
 - Collectively, an interesting no-cost generating reserve for the grid

Adding Wind to Nuclear: N+H₂+R

- Percent is electricity proportion making H₂
- G and H Types are mean wind strength
- Electricity 30 \$US/MW.h
- H₂ from 330 US\$/kW cells (variable current)
- Off-peak H₂ generation
- Basis: 2003 Ontario data
- Result: N+H₂+R makes renewables able to contribute to hydrogen

Context of Canadian Transport

- By 2030, transport use expected to have risen by 30%
 - If using fuel cells, will need just under 1 EJ/a
 - Suppose 50% conversion by then of all transport to run on hydrogen
 - = 24 nuclear reactors of 1000 MW(e) each
 - + 10 more reactors to displace all existing carbon-based electricity
- Current Canadian context
 - 20 reactors operating or being returned to service
- Less whatever can be provided by other sustainable energy sources
 - At competitive prices
- Extend the conversion to hydrogen to 80% before 2050