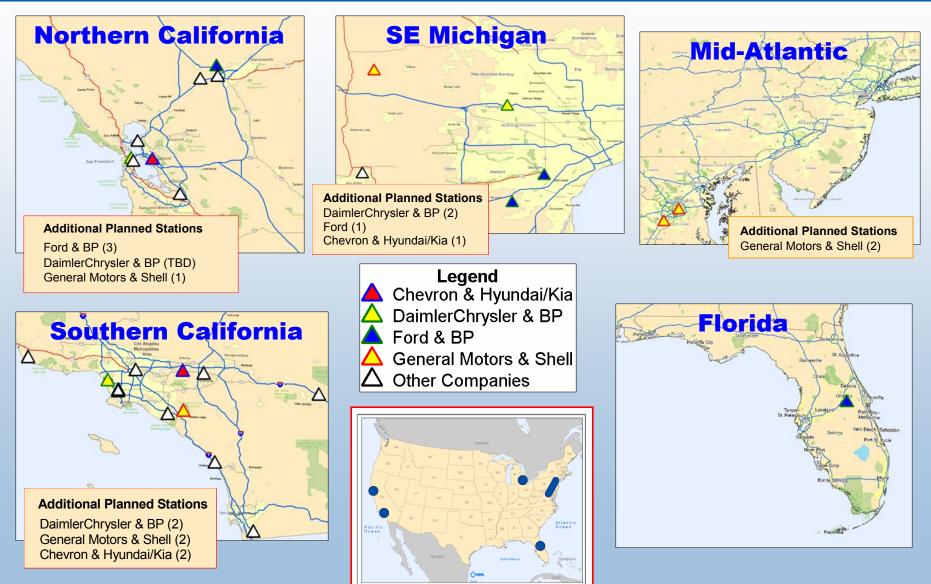

U.S. Hydrogen Demonstration Program Update

IPHE Steering Committee March 28, 2006 Vancouver, Canada



United States of America

Outline

- National Hydrogen Light Duty Demonstration Project
- National Fuel Cell Bus Program
- Hydrogen Powered Transportation
 Navigation / Communication Systems

Refueling Stations from All Four Teams to Test Under Various Climates

National Hydrogen Learning Demonstration Project

- Objectives
 - Validate H₂ FC Vehicles and Infrastructure in Parallel
 - Identify Current Status of Technology and its Evolution
 - Re-Focus H2 Research and Development
 - Support Industry Commercialization Decision by 2015

Key Targets						
Performance Measure	2009*	2015**				
Fuel Cell Stack Durability	2000 hours	5000 hours				
Vehicle Range	250+ miles	300+ miles				
Hydrogen Cost at Station	\$3/gge	\$2-3/gge				
* To verify progress toward 2015 targets ** Subsequent projects to validate 2015 targets						

Hydrogen and gasoline station, WA DC

Teams are Fielding Four Main* Types of Vehicles

Sample Hydrogen Refueling Infrastructure

Composite Data Products (CDPs) are Main Output to Public and Hydrogen Community

A. Critical Program Metrics:

- 1. Fuel Cell Durability, Actual vs. DOE Targets, All OEM's
- 2. Vehicle Ranges, Actual vs. DOE Targets, All OEM's
- 3. H2 Production Cost. Actuals/Projections vs. DOE Targets

B. Composite Performance Tracking:

Vehicles

- 4. Reliability (FC System & Powertrain, MTBF)
- 5. Start Times vs. DOE Target
- 6. Fuel Economy: Dyno, On-Road
- 7. Normalized Vehicle Fuel Economy
- 8. Fuel Cell System Efficiency
- 9. Safety Incidents Vehicle Operation
- 10. Weight % Hydrogen
- 11. Energy Density of Hydrogen Storage
- 12. Vehicle Hydrogen Tank Cycle Life

Hydrogen Infrastructure

- 13. H2 Production Efficiency vs. Process
- 14. Combined Heat and Power (CHP) Efficiencies
- 15. H2 Production Cost vs. Process
- 16. H2 Purity vs. Production Process
- 17. Hydrogen Impurities Range for Production Process A
- 18. Histogram: Refueling Rate
- 19. Average Maintenance Hours Scheduled and Unscheduled
- 20. Safety Incidents Infrastructure

Highlighted CDPs Have Been Completed

C. High Level Program Progress:

Vehicles

- 21. Range of Actual Ambient Temperatures During Vehicle Operation - All Vehicle Teams
- 22. Histogram: # Vehicles vs. Operating Hours to Date
- 23. Histogram: # Vehicles vs. Miles Traveled to Date
- 24. Cumulative Vehicle Miles Traveled All Teams
- 25. Progression of Low to High Pressure On-board H2 Storage

Hydrogen Infrastructure

26. Cumulative Hydrogen Production - All Teams

Light-Duty Learning Demonstration Program Summary

- First year of the 5-year project completed
 - 59 vehicles now in fleet operation
 - Several new refueling stations opened
 - No major safety problems encountered
- Project has identified current technical status relative to program targets
 - Will track improvements from 2nd generation stacks/vehicles introduced mid-way through project
- Future public results will include:
 - FC durability, reliability, efficiency, and start-up times
 - H2 production cost, efficiency, and maintenance

Fuel Cell Bus Demonstrations

- Three fuel cell bus
 demonstration locations
 - Santa Clara Valley
 Transportation Authority
 - AC Transit in Oakland, CA
 - SunLine Transit in Palm Springs, CA
- Currently 7 fuel cell buses
 in revenue service
- Set the current Benchmark for the National Fuel Cell Bus Program

National Fuel Cell Bus Program (NFCBP)

- Facilitate Development of Commercially Viable Fuel Cell Buses
- Competitive Selection of Up to 3 Regionally Diverse Non-Profit Organizations
- One or More Transit Agency as Partner
- 50% Cost Share Required
- \$49 Million Available from FY06 FY09
 - \$11,250,000 FY 06
 - \$11,500,000 FY 07
 - \$12,750,000 FY 08
 - \$13,500,000 FY 09

NFCBP Goals

- Facilitate Development of Commercially Viable Fuel Cell Bus Technologies
 - Fuel Cell Technologies
 - Energy Storage
 - Transit Bus System Integration
 - Power Electronic Technologies
- Significantly Improve Transit Bus Fuel Efficiency & Reduce Petroleum Use
- Reduce Transit Bus Emissions
- Establish Globally Competitive U.S. Industry
- Increase Public Acceptance of Fuel Cells

NFCBP Performance Objectives & Technical Targets

- Pathway to Commercialization
- Fuel Efficiency 2x Comparable Transit Bus
- Emissions Exceed 2010 EPA Standards
- Reliability >90% Availability
- Durability 4 to 6 Years/20,000 to 30,000 hours
- Bus Cost <5x Comparable Transit Bus
- Vehicle Performance Equal or Better to Comparable Transit Bus

Draft National Fuel Cell Bus Program

Parameters & Technical Targets

Fuel cell system	Durability	Market Readiness	Emissions Target	Fuel Efficiency Target	Cost
<u>Gen I</u> 2003-2007	2 year useful life for fuel cell system 4000 – 5000 hrs	Limited revenue service capable, (mostly demo/data collection)	Exceed 2004 EPA and CARB emissions standards for transit bus (ZEV or PZEV)	Exceed fuel efficiency of comparable standard transit bus by 25-percent	Cost about 10 times the cost of comparable transit bus
<u>Gen II</u> 2007-2010	 4-6 year useful life for fuel cell system 25,000 – 30,000 hrs. 	Revenue service capable	Exceed EPA 2010 transit bus emissions standards	Fuel efficiency equivalency of 7- mpg	Cost less than 5 times comparable transit bus
<u>Gen III</u> 2010-2015 +	6 year useful life for fuel cell system 40,000 – 50,000 hrs.	Revenue service operational	Exceed all transit bus emissions standards, ZEV or PZEV	Fuel efficiency equivalency of 10-mpg	Cost less than 2 times comparable transit bus

Navigation/Communication Systems Hydrogen Fuel Cell Standby Power

- Standby Fuel Cell:
 - A Proton Exchange Membrane (PEM) fuel cell it can provide up to 72 hours of continuous 24/48 DC backup power from stored hydrogen for critical communications or facility.
 - The PEM fuel cell operates at low temperature.
 - Saves weight and space by using a much smaller string of storage batteries to provide bridge capacity.
 - The fuel cell converts stored hydrogen into clean and reliable electrical power.
 - PEM fuel cells exhaust water vapor and low levels of CO2

U.S. Hydrogen Transportation Demonstration Program Summary

- Objectives
 - Validate H₂ Fuel Cell Vehicles and Infrastructure in Parallel
 - Identify Current Status of Technology and its Evolution
 - Re-Focus H₂ Research and Development
 - Support Light-Industry Commercialization Decision by 2015 and Bus commercialization before then

Vehicle Targets for Commercialization

- Facilitate Development of Commercially
 Viable Fuel Cell Vehicle Technologies
- Achieve range equivalent of conventional vehicles
- Improved Fuel Cell engine lifetime
- Significantly Improve Fuel Efficiency
- Reduce Petroleum Use & Emissions
- Increase Public Acceptance of Fuel Cells

Infrastructure Targets

- Improve Reliability
- Improve Codes & Standards
- Improve Permitting
- Deliver Cost effective hydrogen