High-pressure Metal Hydride Tank for Fuel Cell Vehicles

Daigoro Mori¹, Norihiko Haraikawa¹, Nobuo Kobayashi¹, Tamio Shinozawa², Tomoya Matsunaga², Hidehito Kubo³, Keiji Toh³, Makoto Tsuzuki³

¹Fuel Cell System Development Div., Toyota Motor Corporation ²Material Engineering Div. 3, Toyota Motor Corporation ³Research & Development Dept., Toyota Industries Corporation

IPHE International Hydrogen Storage Technology Conference 19-22 June 2005, Lucca, Italy

Contact: mori@daigoro.tec.toyota.co.jp

Table of Contents

1. Background 2. Motivation 3. Experimental 4. Results: -Hydrogen storage capacity -High-speed charge -Desorbing ability at low temperature 5. Summary

Issues on FCV towards Market Introduction

Major Issues

Items	Challenges	Responsibility
Technical	Low temperature, High temperature, High Efficiency Size reduction, Reliability Durability, Salt water, Dust, Volcanic gas (H2S), High-altitude, electro-magnetic wave, etc.	Vehicle Ianufacturers
Marketability	Driving range (Hydrogen storage), Cost (Vehicle cost)	
Environment	Recyclability, Life Cycle Assessment (LCA)	
Safety	Hydrogen, High voltage, Crash worthiness	Gøvernment,
Infrastructure	Hydrogen production · transportation · storage, Infrastructure development, Hydrogen cost	Energy Supplier

Cruising Range of High-pressure Storage

High-pressure storage is not sufficient to provide enough energy density

(1) Comparison of fuel amounts (Tank capacity of 70L) Gasoline equivalent (L) (2) Comparison of ranges (Tank capacity of 70L)

Hydrogen Storage Technology

Hydrogen Tank for FCHV

FCHV-3 (2001)

Toyota FCHV (2002)

70 MPa High-pressure Hydrogen Tank* (Developed in Toyota)

Metal Hydride Tank (Low-pressure system with Ti-Cr-V alloy)

35 MPa High-pressure Hydrogen Tank

35 MPa High-pressure Hydrogen Tank* (Developed in Toyota)

*Ref. M. Mizuno, et al., Toyota Motor Corp., Proceedings of the 2005 Spring Meeting of JSAE, EV• HEV• FCV Systems-Components/Evaluation

Issues of Low-pressure MH system

τογοτα

Available hydrogen storage capacity decreased by various restrictions.

Restriction of temperaturepressure band
Absorption→desorption hysteresis
To keep system performance
Low-temperature

Required pressure to supply H₂ for FC system desorption (308 K) absorption (268 K) desorption (268 K)

Performance of On-board Tank System

	Low-pressure MH tank Ti-Cr-V System	High-pressure tank		
Hydrogen storage capacity	3.5 kg /tank 120 L	3 kg / tank 180 L	According to our experience External cooling during refueling Is not easy for example liquid connection	
Tank weight	300 kg	< 100 kg		
Hydrogen filling time	30 -60 min. With external cooling facility	5-10 min.		
Hydrogen release at low temperature	Difficult under 308 K	Possible	For on-board heating during release Only generated heat in FC stack is available	
Control ability	Difficult in acceleration	Good		
Safety	Low pressure (<1 MPa)	High-pressure (35 MPa)		

High-pressure MH Tank

Metal hydride

High pressure cylinder vessel with MH and built in heat exchanger

Ti-Cr-Mn* (AB₂ laves phase) Hydrogen amount: 1.9 mass% H⁰ |: 22kJ/molH₂ Desorbing pressure: 0.5MPa at 243K

Y. Kojima, Toyota Central R&D Labs., Inc., et al.

Collected Abstracts of the 2004 Autumn Meeting of the Japan Inst. Metals

Results: Hydrogen Storage Capacity

High Speed Charge of Hydrogen

Desorbing Ability at Low Temperature

Performance of On-board Tank System

	Low-pressure MH tank	High-pressure tank	High-pressure MH tank
	Ti-Cr-V System		Ti-Cr-Mn System
Hydrogen storage capacity	3.5 kg / tank 120 L	3 kg / tank 180 L	7.3 kg / tank 180 L
Tank weight	300 kg	< 100 kg	420 kg
Hydrogen filling time	30-60 min. With external cooling facility	5-10 min.	5 min. / 80 % Equal to high-pressure tank without cooling facility
Hydrogen release at low temperature	Difficult under 308 K	Possible	Possible even at 243K
Control ability	Difficult in acceleration	Good	Good Equal to high-pressure tank
Safety	Low pressure (< 1 MPa)	High-pressure (35 MPa)	High-pressure (35 MPa)

Target Performance for Metal Hydrides

ltem	Specification	Note
1. Hydrogen storage density	Weight > 3-4 mass% Volume (V/V ₀) > 1,800-2,400	V = stored hydrogen gas volume (273K, 1atm) V ₀ = volume of MH
2. Enthalpy	ΔH < 20 kJ/molH ₂	
3. Equilibrium pressure	> 1.0 MPa / 243 K (desorbing) < 35 MPa / 393 K (absorbing)	
4. Cyclic durability	Decrease of storage capacity < 10% / 1,000 cycles < 5% / 100 cycles	H ₂ purity > 99.99 %

Recent Activities about Hydrogen Storage

- D. Mori, N. Haraikawa, N. Kobayashi, T. Shinozawa, T. Matsunaga, H. Kubo, K. Toh and M. Tsuzuki, "High-pressure Metal Hydride Tank for Fuel Cell Vehicles", 2005 MRS Spring Meeting
- 2) D. Mori, N. Kobayashi, T. Shinozawa, T. Matsunaga, H. Kubo, K. Toh and M. Tsuzuki, J. Japan Inst. Metals, 69, 308 (2005)
- 3) D. Mori, N. Kobayashi, T. Matsunaga, K. Toh and Y. Kojima, Materia Japan, 44, 257 (2005).
- 4) T. Matsunaga, T. Shinozawa, H. Suzuki and D. Mori, "High Desorption Pressure Metal Hydride for High-pressure MH Tank", E-MRS 2005 SPRING MEETING
- 5) H. Suzuki, T. Mouri, K. Tange, Y. Kojima, "Development of Hydrogen Storage Materials for Fuel Cell Vehicle#, ICMAT & ICAM 2005, 3-8 July 2005, Singapore, SYPOSIA (P) Materials for Rechargeable Batteries, Hydrogen Storage and Fuel Cell

Summary

-Performance of High-pressure MH System
1.Hydrogen storage capacity max.7.3kg / tank (volume 180L)
2.High speed charge hydrogen charging rate is over 11,000NL/min (same as 35MPa cylinder vessel)
3.Release H2 at low temperature from 243K
-High-pressure MH system shows a realistic way to obtain adequate cruising range over 700km.

-Large gap to target performance is still remained. To realize hydrogen society, worldwide collaboration study is expected in this field.

Sustainable Mobility TODAY for TOMORROW

