THE POTENTIAL OF ALUMINUM HYDRIDE FOR VEHICULAR HYDROGEN STORAGE

J. J. Reilly, <u>G. Sandrock</u>*, J. Graetz, J. R. Johnson and J. Wegrzyn, Brookhaven National Laboratory Upton, NY 11973 USA

IPHE International Hydrogen Storage Technology Conference 19-22 June 2005 Lucca, Italy

*Contractor to Sandia National Laboratories

Onboard Recharging - The Heat Problem!

How much heat must be removed during recharging?

DOE 2010 Target = $3 \min = 1.7 \text{ kg/min} (5 \text{ kg H}_2 \text{ tank})$

Take as example NaAlH₄ ($\Delta H = -37 \text{ kJ/mol H}_2$)

Q total = 91.8MJ = 510 kw for 3 min \Rightarrow Offboard recharging required??

Aluminum Hydride AlH₃

$$\alpha$$
-AlH₃ \rightarrow Al + 3/2 H₂

H-capacity (g) = 10.1 wt% (DOE 2010 S-Target = 6.0) H-capacity (v) = 149 kg/m³ (DOE 2010 S-Target = 45) ΔH_{des} = 7.6 kJ/mol H₂ (only 20% of NaAlH₄)

Depleted Al

Preparation of AIH₃

 $3LiAlH_4 + AlCl_3 \xrightarrow{\text{ether}} 4AlH_3 + 3LiCl$ Finholt, E.A. et al. J.Am. Chem. Soc. 69,1199(1947)

Note: There are 7 different non-solvated phases of AlH₃, α , α ', β , γ , δ , ϵ , ζ .

F. M Brower, et al. J. Am. Chem. Soc., 98:9, April 28 1976.

α -AlH₃ TPD Curves vs BM Time (Particle Size)

TPD Heating Rate = 2°C/min

Effect of LiH Doping on AlH₃ TPD

Sandrock et al: Appl. Phys. A, 80 (2005) 687-690

Isothermal Kinetics of AIH₃ - 20 mol% LiH

Sandrock et al: Appl. Phys. A, 80 (2005) 687-690

Likely Mechanisms of Doping

Likely Mechanisms: 1. LiH+AlH₃ \Rightarrow LiAlH₄ during BM at RT (shown by contrast XRD with NaH doping) 2. LiAlH₄ serves as windows for H₂ egress from AlH₃ 3. Also works with NaH & KH doping to form NaAlH₄ & KAlH₄ islands on surface 4. Can further dope LiAlH₄ with Ti by standard TiCl₃ alanate process, further enhancing H₂ transparancy

Room Temperature H₂-Desorption of Ti-doped Sample 75%AIH₃-20%LiH-5%TiCl₃ (mol%)

NATIONAL LABORATORY

Direct H₂ gas recharging: 28 kbar@300°C !!

Baranowski & Tkacz, Z. Phys.Phs. Chem. N.F., Bd. 135, 27(1983)

Safety - Some Pyrophoricity

Composition	As Ball Milled	Ball Milled & Dehydrided
AIH ₃	Not pyrophoric	Not pyrophoric
AIH ₃ +20%LiH	Not pyrophoric	Pyrophoric
AIH ₃ +20%LiH+ 5%TiCl ₃	? (not tested)	? (not tested)

- A total of seven AlH₃ isomers are known to exist:
 - α, α', β, δ, ε, γ, ζ
- With exception of α -AlH₃, little is known about these polymorphs
- α , β , and γ phases can be synthesized using organo-metallic reactions

AlH₃ Conclusions

- 1. At this time no known reversible metal hydrides will likely meet the DOE 2010 systems criteria for automotive H storage at T < 100°C.
- 2. Heat dissipation will be a major problem for onboard recharging. Need to rethink the possibility of offboard recharging.
- 3. AIH_3 is a promising H_2 fuel source for a PEM fuel cell due to the high gravimetric/volumetric hydrogen capacity and the low heat required to extract H_2 .
- 4. Doping aged α -AlH₃ (DOW) with LiH, NaH or KH increases lowtemperature decomposition kinetics. Finite room temperature kinetics can be accomplished with further Ti doping.
- 5. α , β and γ AIH₃ have been synthesized at BNL using organo-metallic methods.
- 6. Hydrogen capacities approaching 10 wt% at T < 100° C have been demonstrated with freshly prepared AIH_3 .
- 7. Recharging of spent AI back to AIH_3 likely to be done with an offboard process.

Collaborations

Brookhaven National Lab collaborates with the following US organizations within the US DOE Metal Hydride Center of Excellence:

Sandia National Laboratories

University of Hawaii

Savannah River National Laboratory

NASA Jet Propulsion Laboratory

HRL Laboratories

International collaborations to be determined.

