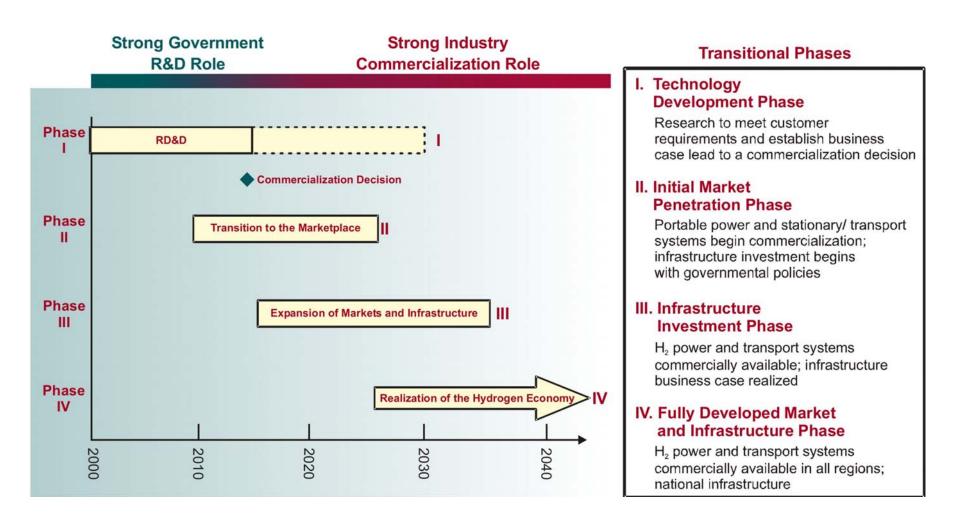


US Hydrogen Program

Country Statement for the IPHE Steering Committee January 26-28, 2005 Paris, FRANCE

United States of America

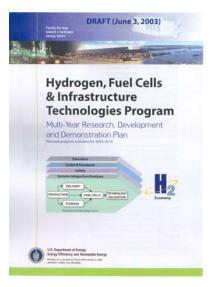


- Program Strategy and Timeline
- New Awards and Activities
- Recent Progress
- Information Sources

Timeline for Hydrogen Economy

Positive commercialization decision in 2015 leads to beginning of mass-produced hydrogen fuel cell cars by 2020

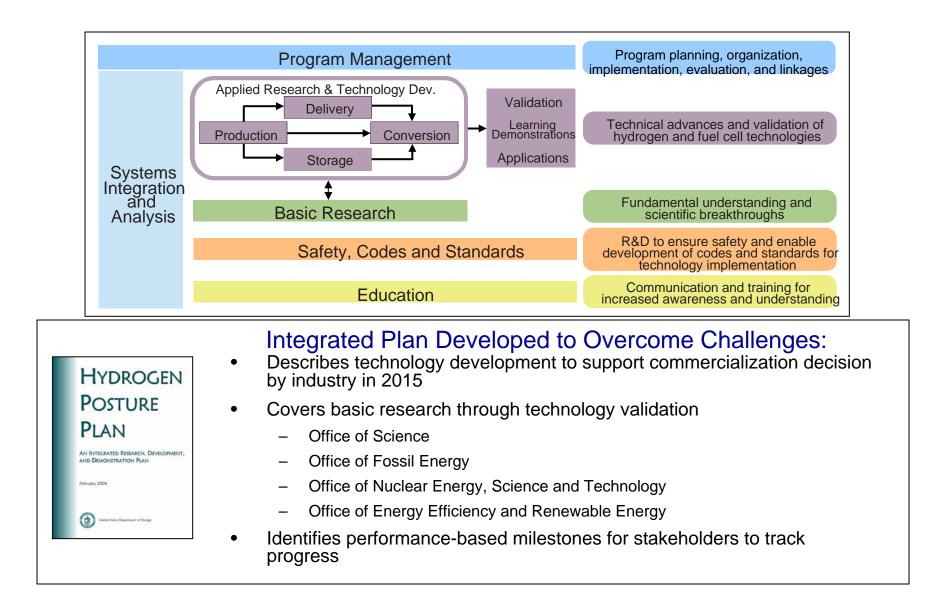
Barriers to a Hydrogen Economy


Critical Path Technology Barriers:

- Hydrogen Storage
 - >300 mile range
- Hydrogen Production Cost
 - \$1.50-2.00 per gge
- Fuel Cell Cost
 - < \$50 per kW</p>

Economic/Institutional Barriers:

- Codes and Standards
 - Safety and Global Competitiveness
- Hydrogen Delivery
 - Investment for new Distribution Infrastructure
- Education

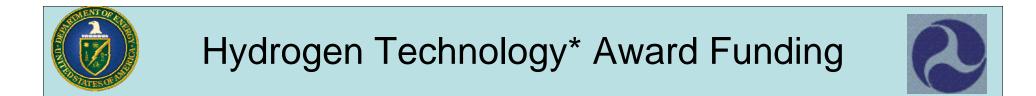


http://www.eere.energy.gov/hydrogenanfuelcells/mypp/

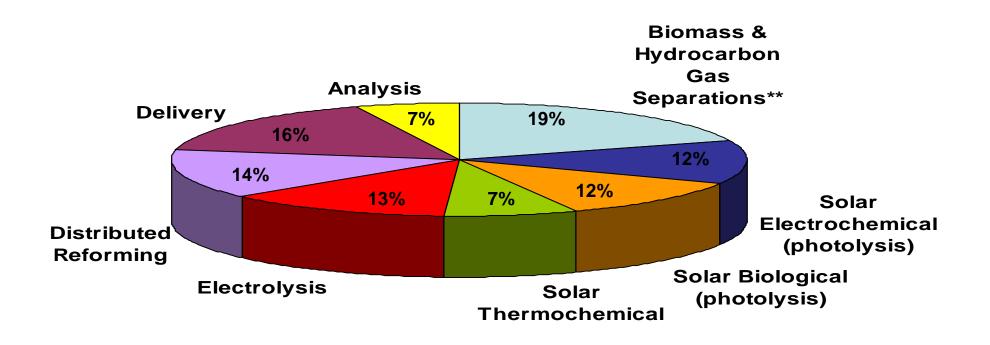
Hydrogen Program Elements

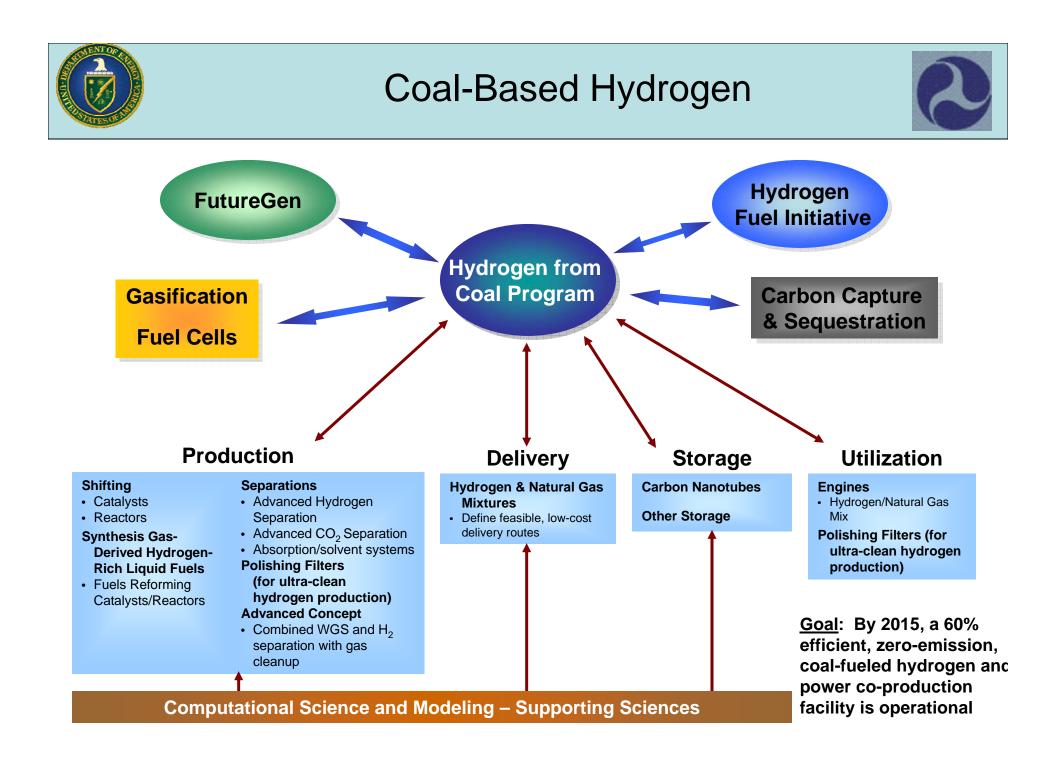
Recent Hydrogen Production Awards

Focused on using energy from diverse, domestic sources


Distributed Reforming: Natural Gas & Renewables • Smaller, efficient reactors with durable catalysts ✓ Autothermal reforming catalysts & efficient systems ✓ Efficient steam methane reforming ✓ Bio-fuel reforming with coke resistant catalysts	 Photolytic Durable materials for photo-electrochemical devices that split water using sunlight Research microorganisms that split water using sunlight
 Reformers with non-precious metal catalysts 	
Electrolysis • Low cost and efficient materials & system designs ✓New membrane and electrode materials for alkaline electrolysis ✓High temperature solid oxide electrolysis systems ✓New membrane and electrode materials	 Solar High Temperature (HT) Thermochemical Cycling Research water splitting using heat (600- 2500C) from solar concentrators and compounds that recycle all chemical constituents during processing
for high pressure electrolysis	

 Wind electrolysis power electronics development

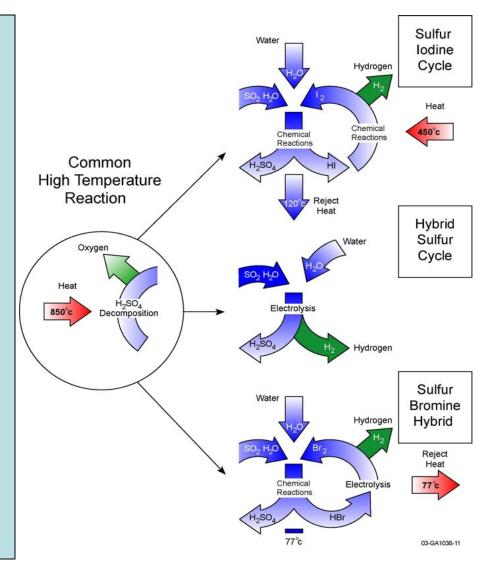




Total with Cost Share = \$102 Million over 3 to 4 years (Federal Share = \$77 Million)

* Hydrogen Technology: Production, Delivery, and Analysis

** Hydrocarbon separation research co-funded with the Office of Fossil Energy

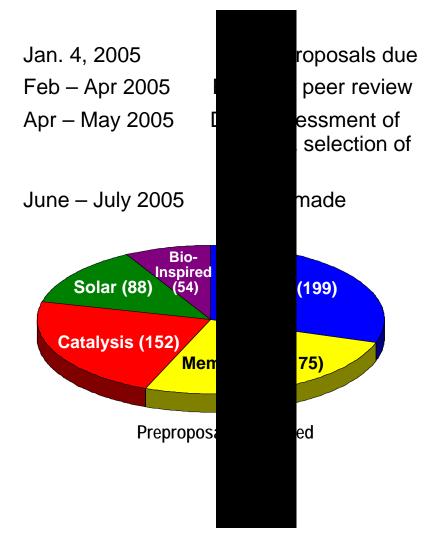


Nuclear-based Hydrogen Production

Objective: By 2017, operate the nuclear hydrogen production plant using nuclear heat from the NGNP to produce hydrogen at a cost competitive with other alternative transportation fuels.

Technologies:

- Electrolysis
- Thermochemical Cycles
- Hybrid Cycles



BES Solicitation for Basic Research for Hydrogen Fuel Initiative

- Approximately \$21.5M in new funding will be awarded in FY05
- Two solicitations (one for universities and one for FFRDCs) were issued in April 2004
- 668 qualified preproposals were received by July 15, 2004 in the following five categories.
 - Novel Materials for Hydrogen Storage
 - Membranes for Separation, Purification, and Ion Transport
 - Design of Catalysts at the Nanoscale
 - Solar Hydrogen Production
 - Bio-Inspired Materials and Processes

 227 full proposals were received by January 4, 2005.

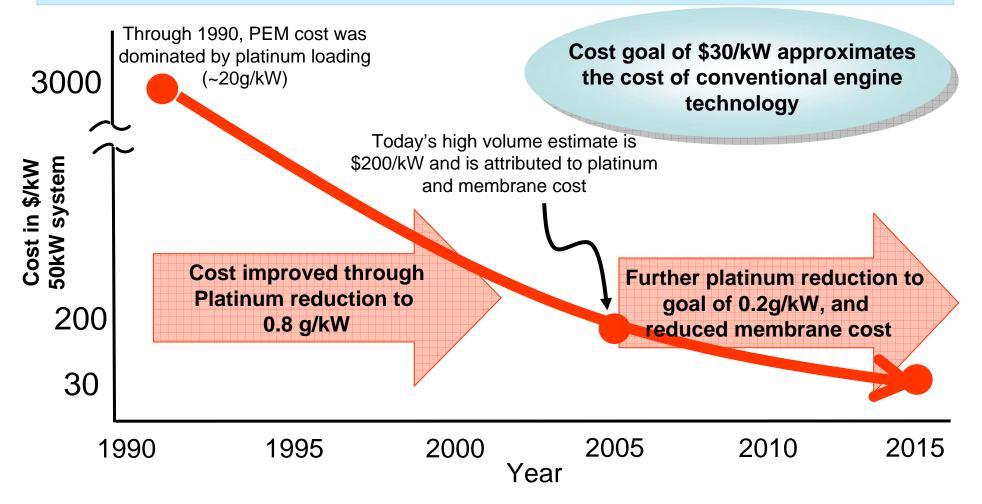
Launched Hydrogen Storage Centers of Excellence

National Hydrogen Storage Project¹ **Centers of Excellence** Independent Projects **Testing & Analysis Cross Cutting** New materials/processes Metal hydrides for on-board storage Basic Compressed gas & **Chemical Storage** Science² liquid hydrogen tanks Off-board **Carbon Materials** storage systems

1. Coordinated by DOE Energy Efficiency and Renewable Energy, Office of Hydrogen, Fuel Cells and Infrastructure Technologies

2. Basic science for hydrogen storage conducted through DOE Office of Science, Basic Energy Sciences

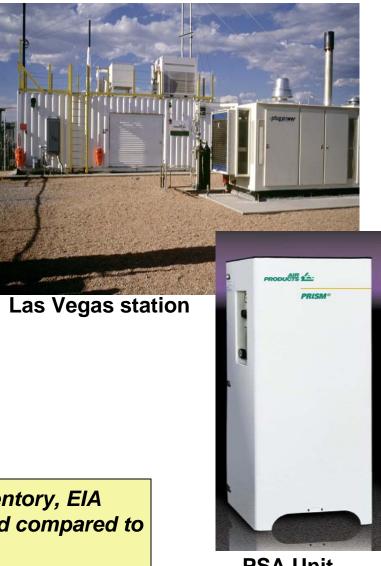
Hydrogen Storage: Stresses solid-state solutions for greater than 300-mile range.


 Metal hydrides: Can "re-fill" H₂ at the fuel station, directly onto car. Light element-hydrogen compounds Solid-state materials, high-capacity 6 National Labs; 7 universities; 5 companies United Technologies, UOP, Intematix, HRL Stanford, CalTech, Univ. Illinois, Univ. Hawaii Sandia NL, Savannah River, NIST, JPL 	 Carbon Materials: Can store & release H₂ near ambient temperature. Nanostructured carbon & metal hybrids Conducting polymers & metal-organic frameworks 4 National Labs; 10 universities; 1 company Air Products Univ. Michigan, Rice, Univ. Penn, Univ NC NREL, Oak Ridge, NIST
 Chemical hydrogen: Re-fill off the vehicle & integrate with refueling station Light-element-hydrogen compounds High capacity, bind H with high energy 2 National Labs; 7 universities; 5 companies 	 New materials: "Out of Box" ideas for hydrogen storage Nanoporous materials & polymers Clathrates Metal perhydrides Glass microspheres 9 universities; 1 company
companies ✓ Air Products, Millennium Cell, Rohm & Haas ✓ RTI, Penn St, Univ Alabama, UCLA, ✓ Los Alamos, Pacific Northwest	 ✓ UC-Berkeley, UConn, Univ Missouri, Univ Michigan, Alfred, UC-Santa Barbara ✓ TOFTEC / Univ. of Florida

PEM Fuel Cell Cost Reduced

Cost of a fuel cell prototype remains high (~\$3,000/kW), but the high volume¹ production cost of today's technology has been reduced to \$200/kW

1. High volume production defined as 500,000 units per year



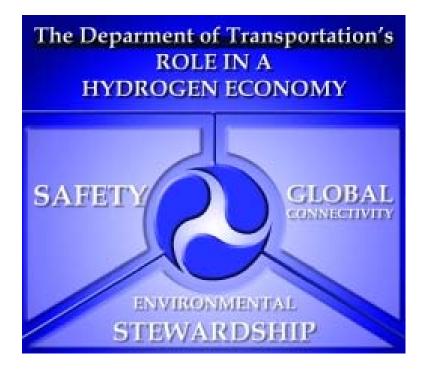
Distributed Natural Gas-Based Hydrogen Production

- APCI validated \$3.60/gge hydrogen delivered, untaxed, co-producing electricity at 8¢ per kWh.
- \$3.00/gge target in 2005 within reach
- Reformer research
 - Optimized desulfurization, reformer, and shift catalysts
 - Improved heat recovery system
- PSA research
 - 99.999% pure H₂
 - 3x cost reduction compared to commercial units
 - Decreased size
 - 82% efficiency (64% in 2003)

In 2025, assuming FCVs represent 12% of LDV inventory, EIA estimates only 2.8% increase in natural gas demand compared to reference case

PSA Unit

Vehicle and Infrastructure "Learning" Demonstration



- \$190 M with 50-50 cost share, for total of \$380 M, over 6 years
- Will help DOE focus its research and development efforts
- Provide insight into vehicle and infrastructure interface issues
- Will help address codes, standards and safety issues
- Major auto and energy companies involved in 5 partnerships

Department of Transportation

- Safety: Regulations that help ensure the safe design and operation of hydrogen vehicles and infrastructure
- **Global Connectivity:** Hydrogen Fuel initiatives involve Global Partnerships and international companies that span continents and borders. DOT's efforts are helping to make hydrogen a cornerstone of sustainable growth.
- Environmental Stewardship: Fuel-cell buses and heavy-duty vehicles will reduce transportation's impact on the environment

DOT Hydrogen Codes, Standards and Regulatory Activities

- National Highway Traffic Safety Administration (NHTSA): Vehicle safety R&D and regulatory role
 - Develop Federal motor Vehicle Safety Standards
 - Component level testing: safety systems, leak detection, fire exposure, and road hazards
 - On-board refueling system/fueling station interface
 - Full vehicle: recycling, fleet data, crash testing
 - International Codes and Standards: Lead U.S. delegation under UN process
- DOT Pipeline and Hazardous Materials Safety Administration
 - Regulation of the transportation safety and security of hazardous materials in commerce
- RSPA the Research and Special Programs Administration
 - Evaluation, hazard analysis and risk management of hydrogen delivery

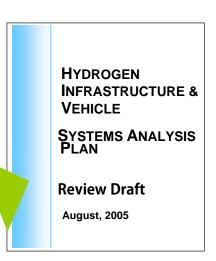
DOE Hydrogen I

2004 Annual Merit Review

and

Peer Evaluation Report May 24-27, 2004 Philadelphia, Pennsylvania

Established Systems Analysis & Integration



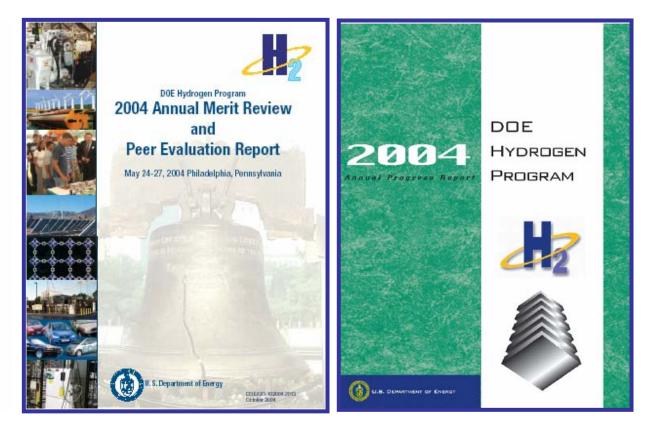
"The effective management of the Department of Energy hydrogen program will be far more challenging than any activity previously undertaken on the civilian energy side of the DOE." – National Academy of Sciences, February 2004

Established an independent Systems Integration and Analyses activity at NREL:

- Established initial program Integrated Baseline

- Combines Technical and Programmatic baselines into a common tool for planning, execution monitoring, and decision-making support
- Introducing Configuration/Change Control and Risk Management processes to the Program
 - Best practices from Federal Agencies/Industry, modified for R&D
 - Independent Technical Reviews
 - Example: On-Board Fuel Processing Go/No-Go decision support in Jun 04
 - Program Peer Review
 - Evaluates every project funded

For More Information



Hydrogen Posture Plan

An Integrated Research, Development, and Demonstration Plan

February 2004

http://www.rspa.dot.gov/dra/hydrogen/index.html http://www.eere.energy.gov/hydrogenandfuelcells/ http://www.ne.doe.gov/hydrogen/hydrogenov.html http://www.fossil.energy.gov/programs/fuels/index.html http://www.sc.doe.gov/bes/bes.html

Interagency Coordination

- Activities include:
 - A Hydrogen R&D
 "Taxonomy" of past, present, and possible future federal R&D
 - A searchable website with news and information on the progress of the President's Hydrogen Fuel Initiative

Hydrogen.gov

About Hydrogen.gov | Why Hydrogen <u>The President's Hydrogen Initiative | Federal Programs</u> <u>Funding Opportunities | Safety, Codes and Standards</u> <u>Regulations</u> <u>Regional and International Partnership Initiatives | News/Events</u>

COMING SOON!

www.hydrogen.gov