

IPHE Country Update March 2017: China

Name	PAN Xiangmin
Contact Information	panxiangmin@tongji.edu.cn +86-21-69583850
Covered Period	October 2016 - March 2017

1. New Policy Initiatives on Hydrogen and Fuel Cell

• The Chinese Society of Automotive Engineers (SAE China) released a "Technology Roadmap for Energy-Saving and New Energy Vehicles" for China in October 2016, including the Fuel Cell Vehicle Technology Roadmap. This technology roadmap is the newest comprehensive guideline for energy-saving vehicles and NEVs and takes into account China's "Made in China 2025" initiative.

		2020	2025	2030
Overall Target		Small-scale demonstration of FCVs in public transportation in particular area. 5,000 units scale	Large-scale application in public and private transportation. 50,000 units scale	Large-scale application of commercial and passenger fuel cell vehicles. Million units scale
		Fuel cell system production capacity greater than 1,000 sets per enterprise	Fuel cell system production capacity greater than 10,000 sets per enterprise	Fuel cell system production capacity greater than 100,000 sets per enterprise
Fuel Cell	Performance requirements	Cold start -30°C, costs at the same level as pure electric vehicles	Cold start -40°C, costs at the same level as hybrid vehicles	Performance is same as traditional vehicle, have competitive advantage
Vehicles	Commercial vehicle	Durability 400,000 km cost≤1,500,000 yuan RMB	Durability 800,000 km cost≪1,000,000 yuan RMB	Durability 1,000,000 km cost≪600,000 yuan RMB
	Passenger Lifetime 200,000 k vehicle cost ≤ 300.000 kuan		Lifetime 250,000 km cost≪200,000 yuan RMB	Lifetime 300,000 km cost≪180,000 yuan RMB
Key compon	y components technologies High speed oil free compressor, hydrogen circulation system, 70MPa hydrogen storage system satisfy the vehicle requirements		System cost lower than 200 yuan / kW	
	H2 production	Distributed renewable hydrogen hydrogen with high efficient	Distributed renewable hydrogen production	
Hydrogen	H2	High pressure compressed H2	Low temperature liquid H2	Organic liquid hydrogen
infra-	transportation	storage and transportation	storage and transportation	storage and transportation
structure	structure Hydrogen refuelling ≥100 stations		≥300 stations	≥1000 stations

FCV Technology Roadmap

• On Oct 28, 2016, the 2016 China Bluebook on Hydrogen Energy Industrial Infrastructure was officially released by China National Institute for Standardization (CNIS) and National Standardization Technical Committee on Hydrogen Energy (SAC/TC 309).

• On Dec 29, 2016, the central authorities renewed the standards of new energy vehicle subsidies for 2017. Except fuel cell vehicle, central and local subsidy standards and limits for various models in 2017 and 2018 fall 20% on the basis of existing standards. The revision also raises technological standards, including battery capacity and pure electric drive range. For fuel cell vehicles, the subsidy standards are defined as follows:

	Vehicle type	Pure electric drive range R (km)	Fuel cell system power rating P (kW)	Subsidy standard (10k RMB)	Technical requirement
	Passenger vehicle	R≧300	30>P>10	0.6/kW, upper limit 20	
	Passenger vehicle			20/unit	Fuel cell system power rating is
Fuel cell	Light bus, truck			30/unit	not less than
vehicle	Large and medium- sized bus, medium and heavy duty truck	R≧300	P≥30	50/unit	30% of the drive motor power rating

2. Hydrogen and Fuel Cell R&D Update

• Peking University and Chinese Academy of Sciences cooperated on research on low temperature hydrogen production from water and methanol, developed a new platinum molybdenum carbide bifunctional catalyst, and on the high production efficiency of hydrogen at low temperature (150-190 °C). The results of the study "Low - temperature hydrogen production from water and methanol using Pt/alpha MoC catalysts" is published in Nature on March 23, 2017.

3. Demonstration and Deployments Update

Transportation:

- January 2017, a 35MPa hydrogen refuelling station opened in Yunfu City in South China's Guangdong Province. This is the first hydrogen refuelling station in Guangdong Province, one of the most promising area for fuel cell vehicles in China. More than 10 HRSs are in planning or under construction in Guangdong Province.
- More and more automobile manufactures began to pay attention on fuel cell vehicles, some of which had developed fuel cell vehicles, such as SAIC, Yutong, Foton, DFM, and so on. A few new fuel cell bus models were included in the national recommended directory of 2017. It was reported that Foton would deploy 60 fuel cell buses in Beijing in May 2017, and 500 Foton fuel cell buses would be deployed around the country in 2017.
- CRRC Qingdao Sifang announced on March 9, 2017 that it has signed a contract to produce eight hydrogen-powered trams. The trams are expected to run on a 17.4 km track with 20 stations in Foshan city, Guangdong province. The first phase of the project officially started construction on February 27th, and is expected to be completed by the end of 2018.

Other Application:

• On October 14th, 2016, the world's first 2MW PEM fuel cell power plant was installed on site at Ynnovate Sanzheng (Yingkou) Fine Chemicals Co. Ltd in Yingkou, Liaoning province, China. This fuel cell power plant was delivered by AkzoNobel, MTSA, and

Nedstack with support from the European Union's Fuel Cells and Hydrogen Joint Undertaking (FCH JU).

• Chinese drone manufacturer MMC introduces the next generation of its hydrogen drone at the International Defense Exhibition and Conference (IDEX 2017). HyDrone 1800's hydrogen fuel cell technology provides a flight endurance of 4 hours.

4. Events and Solicitations

• The "2017 China International Hydrogen and Fuel Cell Conference and Exhibition" will be held in the China International Exhibition Center on October 17-19, 2017. Further information will be provided later.

5. Investments: Government and Collaborative Hydrogen and Fuel Cell Funding None

Summary Country Update March 2017: China

Transportation	Target Number	Current Status	Partnerships, Strategic Approach	Policy Support
Fuel Cell Vehicles ¹	5000 by 2020 (see FCV Technology Roadmap)	Approx. 60	FCV Technology Roadmap is released	 Subsidy for purchase, 200K RMB
FCBus	No national target, Fosan City plans for 300 FCBs by 2017	Approx. 50		• Subsidy for purchase, 300K~500K RMB
Fuel Cell Trucks ²	No national target	Approx. 10		Subsidy for purchase, 300K~500K RMB
Forklifts	No national target			No support policy
H₂ Refueling Stations	Target Number	Current Status	Partnerships, Strategic Approach	Policy Support
70 MPa On-Site Production	No target	1		 Subsidy for installation of a new hydrogen refuelling station with 200kg H2 capacity, 4M RMB
70 MPa Delivered	No target	0		 Subsidy for installation of a new hydrogen refuelling station with 200kg H2 capacity, 4M RMB

²As above

¹ Includes Fuel Cell Electric Vehicles with Range Extenders

35 MPa On-Site Production	No target	1		 Subsidy for installation of a new hydrogen refuelling station with 200kg H2 capacity, 4M RMB
35 MPa Delivered	No target	3	Many cities have plans for building HRS, such as Fosan, Rugao, Yancheng, Wuhan, Beijing, Shanghia, etc.	Subsidy for installation of a new hydrogen refuelling station with 200kg H2 capacity , 4M RMB
Stationary	Target Number ³	Current Status	Partnerships, Strategic Approach	Policy Support
Small⁴	No target			
Medium⁵	No target			
Large ⁶	No target	1		
District Grid ⁷	No target			
Regional Grid ⁸	No target			
Telecom backup	No target	Approx. 50 units		
H ₂ Production	Target ⁹	Current Status	Partnerships, Strategic Approach	Policy Support

³ Targets can be units installed and/or total installed capacity in the size range indicated

⁴<5 kW (e.g., Residential Use)

⁵5kW – 400 kW (e.g., Distributed Residential Use)

⁶ 0.3MW – 10 MW (e.g., Industrial Use)

⁷ 1MW – 30 MW (e.g., Grid Stability, Ancillary Services)

⁸ 30MW plus (e.g., Grid Storage and Systems Management)

⁹ Target can be by quantity (Nm³, kg, t) and by percentage of total production; also, reference to efficiency capabilities can be a target

Fossil Fuels ¹⁰	No target			
Water Electrolysis ¹¹ (PEM, Alkaline, SOEC)	No target			
By-productH ₂	No target			
Energy Storage from	Target ¹²	Current Status	Partnership, Strategic Approach	Policy Support
Renewables				
Renewables Power to Power ¹³ Capacity	No target			

¹⁰Hydrogen produced by reforming processes

¹¹ Please indicate if targets relate to a specific technology (PEM, Alkiline, SOEC)

¹² Can be expressed in MW of Installed Capacity to use the electricity from renewable energy generation, and Annual MWh of stored energy capacity

¹³ Operator has an obligation to return the electricity stored through the use of hydrogen back to electricity

¹⁴ Operator has the opportunity to provide the stored energy in the form of hydrogen back to the energy system through multiple channels (e.g., merchant product, enriched natural gas, synthetic methane fortransportation, heating, electricity)