

The MYRTE project: implementing hydrogen energy storage through the 'GreEnergy Box'

Jérôme GOSSET

Hydrogen & Energy Storage AREVA RENEWABLES

Seville, November 15-16, 2012

Presentation prepared for :

IPHE Workshop "Hydrogen – A competitive Energy Storage Medium to enable the large scale integration of renewable energies"

AREVA Fuel Cells activity

A Business unit dedicated to hydrogen and energy storage

- **Complete and competitive solutions:** Design, development and manufacturing of PEM* H_2 / O_2 fuel cell and electrolyzer systems, producing hydrogen by water electrolysis and electricity with fuel cells
- **Safe and reliable solutions:** Safe, reliable, clean and economical energy solutions for backup power and energy management applications in a power range from 5 kW to 2 MW

p.2

Some H₂ based economic models are dominating

p.3

ΔRFVΔ

MYRTE – The Scale 1 Technology Demonstration General view

liberté • Égalité • Fraternité RÉPUBLIQUE FRANÇAISE Préfecture de Corse

p.4 AREVA

Myrte Project Data Sheet

Project Key Figures

Project leader

 University of Corsica

 Duration

 6 years 2010- 2015

Total Cost	
♦ 21 M€	
🔶 Phase 1	12.4 M€
🔶 Phase 2	5.9 M€
Operations	2.7 M€
Funding	

munig	
EU	7.4 M€
CTCorsica	4.6 M€
French State	3.0 M€
Partners	6.0 M€

Target Applications & Research works

- Improve energy management for electric grid stabilization
 - Peak shaving, PV load smoothing, achieving forecasted production

p.5

AREVA

- Durability, tank material compatibility
- Thermal management
- System management optimization to improve efficiency

IPHE Workshop - AREVA H2 & Storage - J. Gosset

MYRTE Major Milestones Phase 1

Key figures for phase 1 – 2010-2011

PV Plant : 550 kW_p Electrolyzer : 10 Nm³/h H₂ Fuel Cell : 100 kW Stored energy in H₂ : 1.75 MWh

MYRTE Energy Conversion Unit

MYRTE Hydrogen storage

Gas Storage H₂ & O₂ tanks@ 35barg 1400 Nm³ H₂ 700 Nm³ O₂

p.8

AREVA

Taking into account constraints imposed by landscape protection requirements

MYRTE Very limited environmental impact

- The MYRTE project was developed with awareness of both:
 - Social acceptance
 - Protection of the environment (landscape and wildlife)

On the verge of extinction in France, a population of **Hermann's Tortoise** was found on the project site and had to be accommodated

p.9

Demonstrating Evening Peak Contribution

MYRTE Objectives Phase 2 - 2012 to 2015

Objective

- Operate Platform
- Upscale Storage
- Through installation of a Greenergy Box
- Mid 2013 Power increase of the hydrogen system
 - Fuel Cells total power 200 kW
 Electrolyzer flow rate 25 Nm³/h H₂
 Stored Energy 3.5 MWh

gre=nergy box

Maximum charge power	75kW @ 15 Nm³/h
Discharge power	20 to 100 kW
Gas production capacity (at 35 barg)	Hydrogen: 15 Nm³/h Oxygen: 7,5 Nm³/h
Round trip efficiency Electrical efficiency	70-80 % (heat included) 30-35%

- Easy to transport, install and connect
- De-correlation between power and autonomy
- High pressure electrolysis to minimize footprint
- No gas or consumable logistics required

Economics of an Autonomous Energy Station

The requirement for autonomy drives the need for short and long term storage

p.12 AREV

IPHE Workshop - AREVA H₂ & Storage - J. Gosset

Economics of an Autonomous Energy Station

Assumptions

- ◆ Diesel: 2 €/I, 5%/yr increase
- Actualization 4%
- Costs GEB « target 2015»
- ♦ VRLA Batteries at 120 €/kWh
- Key economics drivers
 - Cost of Diesel delivered on site
 - Target Costs of the GEBx and in particular of storage technologies
 - Batteries costs
- Drivers to be assessed
 - Impact of regulations on CO₂ and other gases (SOx, NOx, etc)
 - Ability to continue service under extreme conditions

Pursuing a Carbon Free Decentralized Energy Future

Mutli country & Cross sector

L	Achieve Scale 1 technology demonstrations	Facilities and Programs like MYRTE are key in demonstrating the technology in real field environment	
l	Turn demonstrations into packaged product and focus on customer services issues	Applying state of the art Manufacturing & Supply Chain	
	Build the relevant supply chain to deliver the target cost to the costumer	practices we are confident such applications can be developed	
	Demonstrate economic value proposition and identify target	Early deployment programs will prove very useful to assess economic value	

p.14 AREVA

product costs

From RTD to implementation